A choline-releasing glycerophosphodiesterase essential for phosphatidylcholine biosynthesis and blood stage development in the malaria parasite

  1. Abhinay Ramaprasad
  2. Paul-Christian Burda
  3. Enrica Calvani
  4. Aaron J Sait
  5. Susana Alejandra Palma-Duran
  6. Chrislaine Withers-Martinez
  7. Fiona Hackett
  8. James Macrae
  9. Lucy Collinson
  10. Tim Wolf Gilberger  Is a corresponding author
  11. Michael J Blackman  Is a corresponding author
  1. The Francis Crick Institute, United Kingdom
  2. Centre for Structural Systems Biology, Germany
  3. Bernhard Nocht Institute for Tropical Medicine, Germany

Abstract

The malaria parasite Plasmodium falciparum synthesizes significant amounts of phospholipids to meet the demands of replication within red blood cells. De novo phosphatidylcholine (PC) biosynthesis via the Kennedy pathway is essential, requiring choline that is primarily sourced from host serum lysophosphatidylcholine (lysoPC). LysoPC also acts as an environmental sensor to regulate parasite sexual differentiation. Despite these critical roles for host lysoPC, the enzyme(s) involved in its breakdown to free choline for PC synthesis are unknown. Here we show that a parasite glycerophosphodiesterase (PfGDPD) is indispensable for blood stage parasite proliferation. Exogenous choline rescues growth of PfGDPD-null parasites, directly linking PfGDPD function to choline incorporation. Genetic ablation of PfGDPD reduces choline uptake from lysoPC, resulting in depletion of several PC species in the parasite, whilst purified PfGDPD releases choline from glycerophosphocholine in vitro. Our results identify PfGDPD as a choline-releasing glycerophosphodiesterase that mediates a critical step in PC biosynthesis and parasite survival.

Data availability

Sequencing data have been deposited in ENA under Project PRJEB55180.All data generated or analysed are included in the manuscript or provided as source data files.All source codes are available via github - https://github.com/a2g1n/GDPDxcute.

The following data sets were generated

Article and author information

Author details

  1. Abhinay Ramaprasad

    Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9372-5526
  2. Paul-Christian Burda

    Centre for Structural Systems Biology, Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0461-4352
  3. Enrica Calvani

    Mass Spectrometry Science Technology Platform, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Aaron J Sait

    Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6091-0426
  5. Susana Alejandra Palma-Duran

    Mass Spectrometry Science Technology Platform, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Chrislaine Withers-Martinez

    Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Fiona Hackett

    Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. James Macrae

    Mass Spectrometry Science Technology Platform, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1464-8583
  9. Lucy Collinson

    Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Tim Wolf Gilberger

    Parasitology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
    For correspondence
    gilberger@bnitm.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7965-8272
  11. Michael J Blackman

    Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
    For correspondence
    Mike.Blackman@crick.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7442-3810

Funding

H2020 Marie Skłodowska-Curie Actions (751865)

  • Abhinay Ramaprasad

Wellcome Trust (20318/A/20/Z)

  • Michael J Blackman

Cancer Research UK (CC2129)

  • Abhinay Ramaprasad
  • Enrica Calvani
  • Aaron J Sait
  • Susana Alejandra Palma-Duran
  • Chrislaine Withers-Martinez
  • Fiona Hackett
  • James Macrae
  • Lucy Collinson
  • Michael J Blackman

Medical Research Council (CC2129)

  • Abhinay Ramaprasad
  • Enrica Calvani
  • Aaron J Sait
  • Susana Alejandra Palma-Duran
  • Chrislaine Withers-Martinez
  • Fiona Hackett
  • James Macrae
  • Lucy Collinson
  • Michael J Blackman

Wellcome Trust (CC2129)

  • Abhinay Ramaprasad
  • Enrica Calvani
  • Aaron J Sait
  • Susana Alejandra Palma-Duran
  • Chrislaine Withers-Martinez
  • Fiona Hackett
  • James Macrae
  • Lucy Collinson
  • Michael J Blackman

Wellcome Trust (ISSF2)

  • Michael J Blackman

Deutsche Forschungsgemeinschaft (414222880)

  • Paul-Christian Burda

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Malcolm J McConville, The University of Melbourne, Australia

Version history

  1. Preprint posted: June 14, 2022 (view preprint)
  2. Received: July 27, 2022
  3. Accepted: December 23, 2022
  4. Accepted Manuscript published: December 28, 2022 (version 1)
  5. Version of Record published: January 30, 2023 (version 2)

Copyright

© 2022, Ramaprasad et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 750
    Page views
  • 165
    Downloads
  • 1
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Abhinay Ramaprasad
  2. Paul-Christian Burda
  3. Enrica Calvani
  4. Aaron J Sait
  5. Susana Alejandra Palma-Duran
  6. Chrislaine Withers-Martinez
  7. Fiona Hackett
  8. James Macrae
  9. Lucy Collinson
  10. Tim Wolf Gilberger
  11. Michael J Blackman
(2022)
A choline-releasing glycerophosphodiesterase essential for phosphatidylcholine biosynthesis and blood stage development in the malaria parasite
eLife 11:e82207.
https://doi.org/10.7554/eLife.82207

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Sevim Kahraman, Kimitaka Shibue ... Rohit N Kulkarni
    Tools and Resources

    Pancreatic a-cells secrete glucagon, an insulin counter-regulatory peptide hormone critical for the maintenance of glucose homeostasis. Investigation of the function of human a-cells remains a challenge due to the lack of cost-effective purification methods to isolate high-quality a-cells from islets. Here, we use the reaction-based probe diacetylated Zinpyr1 (DA-ZP1) to introduce a novel and simple method for enriching live a-cells from dissociated human islet cells with ~ 95% purity. The a-cells, confirmed by sorting and immunostaining for glucagon, were cultured up to 10 days to form a-pseudoislets. The a-pseudoislets could be maintained in culture without significant loss of viability, and responded to glucose challenge by secreting appropriate levels of glucagon. RNA-sequencing analyses (RNA-seq) revealed that expression levels of key a-cell identity genes were sustained in culture while some of the genes such as DLK1, GSN, SMIM24 were altered in a-pseudoislets in a time-dependent manner. In conclusion, we report a method to sort human primary a-cells with high purity that can be used for downstream analyses such as functional and transcriptional studies.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Valentin Chabert, Geun-Don Kim ... Andreas Mayer
    Research Article

    Eukaryotic cells control inorganic phosphate to balance its role as essential macronutrient with its negative bioenergetic impact on reactions liberating phosphate. Phosphate homeostasis depends on the conserved INPHORS signaling pathway that utilizes inositol pyrophosphates and SPX receptor domains. Since cells synthesize various inositol pyrophosphates and SPX domains bind them promiscuously, it is unclear whether a specific inositol pyrophosphate regulates SPX domains in vivo, or whether multiple inositol pyrophosphates act as a pool. In contrast to previous models, which postulated that phosphate starvation is signaled by increased production of the inositol pyrophosphate 1-IP7, we now show that the levels of all detectable inositol pyrophosphates of yeast, 1-IP7, 5-IP7, and 1,5-IP8, strongly decline upon phosphate starvation. Among these, specifically the decline of 1,5-IP8 triggers the transcriptional phosphate starvation response, the PHO pathway. 1,5-IP8 inactivates the cyclin-dependent kinase inhibitor Pho81 through its SPX domain. This stimulates the cyclin-dependent kinase Pho85-Pho80 to phosphorylate the transcription factor Pho4 and repress the PHO pathway. Combining our results with observations from other systems, we propose a unified model where 1,5-IP8 signals cytosolic phosphate abundance to SPX proteins in fungi, plants, and mammals. Its absence triggers starvation responses.