Photosynthesis: Surviving on low-energy light comes at a price

Two species of photosynthetic cyanobacteria can thrive in far-red light but they either become less resilient to photodamage or less energy efficient.
  1. Elisabet Romero  Is a corresponding author
  1. Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Spain

Life on Earth as we know it depends on photosynthesis. In this process, plants, algae and cyanobacteria use solar energy to convert water and carbon dioxide into the oxygen we breathe and the glucose that fuels many biological processes (Blankenship, 2002).

The photosynthetic machinery is made from an intricate and complicated collection of protein complexes containing mainly chlorophyll a molecules and carotenoid molecules. Several of these complexes work together in a synchronised fashion to accomplish an amazing feat: to split water molecules (one of the most stable molecules on earth) to extract electrons and produce oxygen, and to transfer electrons to quinone molecules so that photosynthesis can continue. The efficiency of this initial energy-conversion step determines the outcome of the whole process.

For many years it was thought that the red light absorbed by chlorophyll a (which has a wavelength of 680 nanometres) was the lowest-energy light that could be used to drive oxygenic photosynthesis while minimising the damage caused by high levels of light (Rutherford et al., 2012). However, previous research has shown that some cyanobacteria living in shaded environments can thrive in far-red light, which is close to the limit of what we can see: this light is lower in energy than red light because its wavelength is longer (720 nanometres) (Figure 1). These cyanobacteria contain chlorophyll d and chlorophyll f in addition to chlorophyll a, but they can still perform the same reactions as organisms that contain only chlorophyll a (Miyashita et al., 1996; Renger and Schlodder, 2008; Gan et al., 2014; Nürnberg et al., 2018; Davis et al., 2016). So far, however, it has not been clear if these species pay a price in terms of resilience to photodamage or energy conversion efficiency.

Photosynthesis in red light and far-red light.

Plants, algae and cyanobacteria use a molecule called chlorophyll a (Chl-a) to absorb red light to power the process of photosynthesis. Studies have shown that Chl-a is resilient to photodamage and is efficient in using light energy. Some cyanobacteria (green circles in the blue pond; not to scale) have adapted to their darker environments by using different chlorophyll molecules – chlorophyll d (Chl-d) and chlorophyll f (Chl-f) – to absorb far-red light (which is less energetic than red light). However, the use of these molecules comes at a price: Chl-d organisms are energy efficient but they are not resilient to photodamage; Chl-f organisms, on the other hand, are not energy efficient but they are resilient to photodamage.

Now, in eLife, Stefania Viola and A William Rutherford of Imperial College London and colleagues – who are based at Imperial, the CNR in Milan, the Free University of Berlin, Sorbonne University and CEA-Saclay – report new insights into far-red photosynthesis (Viola et al., 2022). The team studied two species of cyanobacteria that use far-red photosynthesis: Acaryochloris marina, which lives in shaded environments, and Chroococcidiopsis thermalis, which lives in variable light conditions and can switch between standard photosynthesis and far-red photosynthesis depending on the light energy. To assess whether these organisms have the same resilience to photodamage and energy conversion efficiency as organisms that contain only chlorophyll a, Viola et al. investigated many aspects of the first initial energy-conversion step in photosynthesis (as described above). This included measuring the amount of oxygen generated, as well as the quantity of reactive oxygen species produced, which can lead to photodamage.

This revealed that both species of cyanobacteria produced comparable amounts of oxygen to chlorophyll a-only cyanobacteria. The photosystem II of A. marina, which contains 34 chlorophyll d molecules and just one chlorophyll a molecule, was highly efficient, but also produced high levels of reactive oxygen species when exposed to high-light levels, making it less resilient to photodamage. In contrast, when C. thermalis – which contains four chlorophyll f, one chlorophyll d and 30 chlorophyll a molecules – was grown in far-red light it produced fewer reactive oxygen species, but was also less energy efficient.

Viola et al. present a detailed picture of how these organisms have adapted to the low-light conditions specific to their environments and the associated costs of their traits. A better understanding of how photosynthetic organisms make use of low-energy light could help scientists to engineer far-red photosystems into algae or plants containing only chlorophyll a, thereby enhancing their use of sunlight and improving crop yields (Chen and Blankenship, 2011). Moreover, in the future, artificial systems could be designed to use low-energy light to generate solar fuels.

References

Article and author information

Author details

  1. Elisabet Romero

    Elisabet Romero is in the Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Tarragona, Spain

    For correspondence
    eromero@iciq.es
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3630-1617

Publication history

  1. Version of Record published:

Copyright

© 2022, Romero

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,504
    views
  • 164
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Elisabet Romero
(2022)
Photosynthesis: Surviving on low-energy light comes at a price
eLife 11:e82221.
https://doi.org/10.7554/eLife.82221
  1. Further reading

Further reading

    1. Structural Biology and Molecular Biophysics
    Kate Huffer, Matthew CS Denley ... Kenton J Swartz
    Research Article

    Transient receptor potential (TRP) channels are a large and diverse family of tetrameric cation-selective channels that are activated by many different types of stimuli, including noxious heat or cold, organic ligands such as vanilloids or cooling agents, or intracellular Ca2+. Structures available for all subtypes of TRP channels reveal that the transmembrane domains are closely related despite their unique sensitivity to activating stimuli. Here, we use computational and electrophysiological approaches to explore the conservation of the cooling agent binding pocket identified within the S1–S4 domain of the Melastatin subfamily member TRPM8, the mammalian sensor of noxious cold, with other TRPM channel subtypes. We find that a subset of TRPM channels, including TRPM2, TRPM4, and TRPM5, contain pockets very similar to the cooling agent binding pocket in TRPM8. We then show how the cooling agent icilin modulates activation of mouse TRPM4 to intracellular Ca2+, enhancing the sensitivity of the channel to Ca2+ and diminishing outward-rectification to promote opening at negative voltages. Mutations known to promote or diminish activation of TRPM8 by cooling agents similarly alter activation of TRPM4 by icilin, suggesting that icilin binds to the cooling agent binding pocket to promote opening of the channel. These findings demonstrate that TRPM4 and TRPM8 channels share related ligand binding pockets that are allosterically coupled to opening of the pore.

    1. Structural Biology and Molecular Biophysics
    Alessia Golluscio, Jodene Eldstrom ... H Peter Larsson
    Research Article

    In cardiomyocytes, the KCNQ1/KCNE1 channel complex mediates the slow delayed-rectifier current (IKs), pivotal during the repolarization phase of the ventricular action potential. Mutations in IKs cause long QT syndrome (LQTS), a syndrome with a prolonged QT interval on the ECG, which increases the risk of ventricular arrhythmia and sudden cardiac death. One potential therapeutical intervention for LQTS is based on targeting IKs channels to restore channel function and/or the physiological QT interval. Polyunsaturated fatty acids (PUFAs) are potent activators of KCNQ1 channels and activate IKs channels by binding to two different sites, one in the voltage sensor domain – which shifts the voltage dependence to more negative voltages – and the other in the pore domain – which increases the maximal conductance of the channels (Gmax). However, the mechanism by which PUFAs increase the Gmax of the IKs channels is still poorly understood. In addition, it is unclear why IKs channels have a very small single-channel conductance and a low open probability or whether PUFAs affect any of these properties of IKs channels. Our results suggest that the selectivity filter in KCNQ1 is normally unstable, contributing to the low open probability, and that the PUFA-induced increase in Gmax is caused by a stabilization of the selectivity filter in an open-conductive state.