Efficient generation of marmoset primordial germ cell-like cells using induced pluripotent stem cells

Abstract

Reconstitution of germ cell fate from pluripotent stem cells provides an opportunity to understand the molecular underpinnings of germ cell development. Here, we established robust methods for pluripotent stem cell (iPSC) culture in the common marmoset (Callithrix jacchus, cj), allowing stable propagation in an undifferentiated state. Notably, iPSCs cultured on a feeder layer in the presence of a WNT signaling inhibitor upregulated genes related to ubiquitin-dependent protein catabolic processes and enter a permissive state that enables differentiation into primordial germ cell-like cells (PGCLCs) bearing immunophenotypic and transcriptomic similarities to pre-migratory cjPGCs in vivo. Induction of cjPGCLCs is accompanied by transient upregulation of mesodermal genes, culminating in the establishment of a primate specific germline transcriptional network. Moreover, cjPGCLCs can be expanded in monolayer while retaining the germline state. Upon co-culture with mouse testicular somatic cells, these cells acquire an early prospermatogonia-like phenotype. Our findings provide a framework for understanding and reconstituting marmoset germ cell development in vitro, thus providing a comparative tool and foundation for a preclinical modeling of human in vitro gametogenesis.

Data availability

Accession number for RNA-seq and whole genome bisulfite sequencing generated in this study is GSE210576. The Exome sequence data generated in this study are available as SRA BioProject PRJNA856282.

The following data sets were generated

Article and author information

Author details

  1. Yasunari Seita

    Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Keren Cheng

    Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9617-3584
  3. John R McCarrey

    Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Nomesh Yadu

    Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Ian H Cheeseman

    Genomics Core, The University of Texas at San Antonio, San Antonio, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Alec Bagwell

    Genomics Core, The University of Texas at San Antonio, San Antonio, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Corinna N Ross

    Genomics Core, The University of Texas at San Antonio, San Antonio, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Isamar Santana Toro

    Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Li-hua Yen

    Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Sean Vargas

    Genomics Core, The University of Texas at San Antonio, San Antonio, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Christopher S Navara

    Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, United States
    For correspondence
    christopher.navara@utsa.edu
    Competing interests
    The authors declare that no competing interests exist.
  12. Brian P Hermann

    Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, United States
    For correspondence
    Brian.Hermann@utsa.edu
    Competing interests
    The authors declare that no competing interests exist.
  13. Kotaro Sasaki

    Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, United States
    For correspondence
    ksasaki@vet.upenn.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5604-2651

Funding

Open Philanthropy Project (2019-197906)

  • Kotaro Sasaki

Open Philanthropy Project (10080664)

  • Kotaro Sasaki

National Institute on Drug Abuse (U01DA054170)

  • Brian P Hermann

Eunice Kennedy Shriver National Institute of Child Health and Human Development (R01HD090007)

  • Brian P Hermann

National Institute on Aging (P51OD011133)

  • Corinna N Ross

National Institute on Minority Health and Health Disparities (G12MD007591)

  • Sean Vargas

National Science Foundation (DBI-1337513)

  • Sean Vargas

National Science Foundation (DBI-2018408)

  • Sean Vargas

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Marianne E Bronner, California Institute of Technology, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All procedures were reviewed and approved by the Texas Biomedical Research Institute IACUC (1772CJ).

Version history

  1. Preprint posted: July 25, 2022 (view preprint)
  2. Received: July 28, 2022
  3. Accepted: January 31, 2023
  4. Accepted Manuscript published: January 31, 2023 (version 1)
  5. Version of Record published: February 17, 2023 (version 2)

Copyright

© 2023, Seita et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,350
    views
  • 374
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yasunari Seita
  2. Keren Cheng
  3. John R McCarrey
  4. Nomesh Yadu
  5. Ian H Cheeseman
  6. Alec Bagwell
  7. Corinna N Ross
  8. Isamar Santana Toro
  9. Li-hua Yen
  10. Sean Vargas
  11. Christopher S Navara
  12. Brian P Hermann
  13. Kotaro Sasaki
(2023)
Efficient generation of marmoset primordial germ cell-like cells using induced pluripotent stem cells
eLife 12:e82263.
https://doi.org/10.7554/eLife.82263

Share this article

https://doi.org/10.7554/eLife.82263

Further reading

    1. Developmental Biology
    Zhimin Xu, Zhao Wang ... Yingchuan B Qi
    Research Article

    Precise developmental timing control is essential for organism formation and function, but its mechanisms are unclear. In C. elegans, the microRNA lin-4 critically regulates developmental timing by post-transcriptionally downregulating the larval-stage-fate controller LIN-14. However, the mechanisms triggering the activation of lin-4 expression toward the end of the first larval stage remain unknown. We demonstrate that the transmembrane transcription factor MYRF-1 is necessary for lin-4 activation. MYRF-1 is initially localized on the cell membrane, and its increased cleavage and nuclear accumulation coincide with lin-4 expression timing. MYRF-1 regulates lin-4 expression cell-autonomously and hyperactive MYRF-1 can prematurely drive lin-4 expression in embryos and young first-stage larvae. The tandem lin-4 promoter DNA recruits MYRF-1GFP to form visible loci in the nucleus, suggesting that MYRF-1 directly binds to the lin-4 promoter. Our findings identify a crucial link in understanding developmental timing regulation and establish MYRF-1 as a key regulator of lin-4 expression.

    1. Developmental Biology
    2. Structural Biology and Molecular Biophysics
    Samuel C Griffiths, Jia Tan ... Hsin-Yi Henry Ho
    Research Article Updated

    The receptor tyrosine kinase ROR2 mediates noncanonical WNT5A signaling to orchestrate tissue morphogenetic processes, and dysfunction of the pathway causes Robinow syndrome, brachydactyly B, and metastatic diseases. The domain(s) and mechanisms required for ROR2 function, however, remain unclear. We solved the crystal structure of the extracellular cysteine-rich (CRD) and Kringle (Kr) domains of ROR2 and found that, unlike other CRDs, the ROR2 CRD lacks the signature hydrophobic pocket that binds lipids/lipid-modified proteins, such as WNTs, suggesting a novel mechanism of ligand reception. Functionally, we showed that the ROR2 CRD, but not other domains, is required and minimally sufficient to promote WNT5A signaling, and Robinow mutations in the CRD and the adjacent Kr impair ROR2 secretion and function. Moreover, using function-activating and -perturbing antibodies against the Frizzled (FZ) family of WNT receptors, we demonstrate the involvement of FZ in WNT5A-ROR signaling. Thus, ROR2 acts via its CRD to potentiate the function of a receptor super-complex that includes FZ to transduce WNT5A signals.