Hepatic inactivation of murine Surf4 results in marked reduction in plasma cholesterol

Abstract

PCSK9 negatively regulates low-density lipoprotein receptor (LDLR) abundance on the cell surface, leading to decreased hepatic clearance of LDL particles and increased levels of plasma cholesterol. We previously identified SURF4 as a cargo receptor that facilitates PCSK9 secretion in HEK293T cells (Emmer et al., 2018). Here, we generated hepatic SURF4-deficient mice (Surf4fl/fl Alb-Cre+) to investigate the physiologic role of SURF4 in vivo. Surf4fl/fl Alb-Cre+ mice exhibited normal viability, gross development, and fertility. Plasma PCSK9 levels were reduced by ~60% in Surf4fl/fl Alb-Cre+ mice, with a corresponding ~50% increase in steady state LDLR protein abundance in the liver, consistent with SURF4 functioning as a cargo receptor for PCSK9. Surprisingly, these mice exhibited a marked reduction in plasma cholesterol and triglyceride levels out of proportion to the partial increase in hepatic LDLR abundance. Detailed characterization of lipoprotein metabolism in these mice instead revealed a severe defect in hepatic lipoprotein secretion, consistent with prior reports of SURF4 also promoting the secretion of apolipoprotein B. Despite a small increase in liver mass and lipid content, histologic evaluation revealed no evidence of steatohepatitis or fibrosis in Surf4fl/fl Alb-Cre+ mice. Acute depletion of hepatic SURF4 by CRISPR/Cas9 or liver-targeted siRNA in adult mice confirms these findings. Together, these data support the physiologic significance of SURF4 in the hepatic secretion of PCSK9 and APOB-containing lipoproteins and its potential as a therapeutic target in atherosclerotic cardiovascular diseases.

Data availability

Sequencing data have been deposited in GEO (accession number GSE214393) . All data generated or analyzed during this study are included in the manuscript and supporting files. Source data files have been provided for figure 1, figure 2, figure 3, and figure 6-figure supplement 1.

The following data sets were generated

Article and author information

Author details

  1. Vi T Tang

    Department of Molecular and Integrative Physiology, University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Joseph McCormick

    Life Sciences Institute, University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Bolin Xu

    College of Future Technology, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Yawei Wang

    Center for Life Sciences, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Huan Fang

    College of Future Technology, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Xiao Wang

    College of Future Technology, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  7. David Siemieniak

    Life Sciences Institute, University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Rami Khoriaty

    Department of Internal Medicine, University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Brian T Emmer

    Department of Internal Medicine, University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7365-1021
  10. Xiao-Wei Chen

    State Key Laboratory of Membrane Biology, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4564-5120
  11. David Ginsburg

    Life Sciences Institute, University of Michigan-Ann Arbor, Ann Arbor, United States
    For correspondence
    ginsburg@umich.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6436-8942

Funding

American Heart Association (20PRE35210706)

  • Vi T Tang

University of Michigan (Rackham Predoctoral Fellowship)

  • Vi T Tang

Howard Hughes Medical Institute

  • David Ginsburg

National Institutes of Health (R35HL135793)

  • David Ginsburg

National Institutes of Health (R01HL148333)

  • Rami Khoriaty

National Institutes of Health (R01HL157062)

  • Rami Khoriaty

National Institutes of Health (K08HL148552)

  • Brian T Emmer

National Key Research and Development Program of China (2018YFA0506900)

  • Xiao-Wei Chen

National Science Foundation of China (91954001)

  • Xiao-Wei Chen

National Science Foundation of China (31571213)

  • Xiao-Wei Chen

National Science Foundation of China (31521062)

  • Xiao-Wei Chen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Randy Schekman, Howard Hughes Medical Institute, University of California, Berkeley, United States

Ethics

Animal experimentation: All animal care and use complied with the Principles of Laboratory and Animal Care established by the National Society for Medical Research. All animal protocols in this study have been approved by the Institutional Animal Care and Use Committee (IACUC) of the University of Michigan (protocol number PRO00009304) and the IACUC of Peking University.

Version history

  1. Preprint posted: August 3, 2022 (view preprint)
  2. Received: August 9, 2022
  3. Accepted: October 3, 2022
  4. Accepted Manuscript published: October 4, 2022 (version 1)
  5. Version of Record published: October 19, 2022 (version 2)

Copyright

© 2022, Tang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 791
    views
  • 195
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Vi T Tang
  2. Joseph McCormick
  3. Bolin Xu
  4. Yawei Wang
  5. Huan Fang
  6. Xiao Wang
  7. David Siemieniak
  8. Rami Khoriaty
  9. Brian T Emmer
  10. Xiao-Wei Chen
  11. David Ginsburg
(2022)
Hepatic inactivation of murine Surf4 results in marked reduction in plasma cholesterol
eLife 11:e82269.
https://doi.org/10.7554/eLife.82269

Share this article

https://doi.org/10.7554/eLife.82269

Further reading

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Marcel Proske, Robert Janowski ... Dierk Niessing
    Research Article

    Mutations in the human PURA gene cause the neurodevelopmental PURA syndrome. In contrast to several other monogenetic disorders, almost all reported mutations in this nucleic acid-binding protein result in the full disease penetrance. In this study, we observed that patient mutations across PURA impair its previously reported co-localization with processing bodies. These mutations either destroyed the folding integrity, RNA binding, or dimerization of PURA. We also solved the crystal structures of the N- and C-terminal PUR domains of human PURA and combined them with molecular dynamics simulations and nuclear magnetic resonance measurements. The observed unusually high dynamics and structural promiscuity of PURA indicated that this protein is particularly susceptible to mutations impairing its structural integrity. It offers an explanation why even conservative mutations across PURA result in the full penetrance of symptoms in patients with PURA syndrome.

    1. Cell Biology
    Mathieu C Husser, Nhat P Pham ... Alisa Piekny
    Tools and Resources

    Endogenous tags have become invaluable tools to visualize and study native proteins in live cells. However, generating human cell lines carrying endogenous tags is difficult due to the low efficiency of homology-directed repair. Recently, an engineered split mNeonGreen protein was used to generate a large-scale endogenous tag library in HEK293 cells. Using split mNeonGreen for large-scale endogenous tagging in human iPSCs would open the door to studying protein function in healthy cells and across differentiated cell types. We engineered an iPS cell line to express the large fragment of the split mNeonGreen protein (mNG21-10) and showed that it enables fast and efficient endogenous tagging of proteins with the short fragment (mNG211). We also demonstrate that neural network-based image restoration enables live imaging studies of highly dynamic cellular processes such as cytokinesis in iPSCs. This work represents the first step towards a genome-wide endogenous tag library in human stem cells.