Differences in the inflammatory proteome of East African and Western European adults and associations with environmental and dietary factors

  1. Godfrey S Temba
  2. Nadira Vadaq
  3. Vesla Kullaya
  4. Tal Pecht
  5. Paolo Lionetti
  6. Duccio Cavalieri
  7. Joachim L Schultze
  8. Reginald Kavishe
  9. Leo AB Joosten
  10. Andre J van der Ven
  11. Blandina T Mmbaga
  12. Mihai G Netea
  13. Quirijn de Mast  Is a corresponding author
  1. Radboud University Nijmegen Medical Centre, Netherlands
  2. Kilimanjaro Christian Medical Centre, United Republic of Tanzania
  3. University of Bonn, Germany
  4. University of Florence, Italy

Abstract

Non-communicable diseases (NCDs) are rising rapidly in urbanizing populations in sub-Saharan Africa. Assessment of inflammatory and metabolic characteristics of a urbanizing African population and the comparison with populations outside Africa could provide insight in the pathophysiology of the rapidly increasing epidemic of NCDs, including the role of environmental and dietary changes. Using a proteomic plasma profiling approach comprising 92 inflammation-related molecules, we examined differences in the inflammatory proteome in healthy Tanzanian and healthy Dutch adults. We show that healthy Tanzanians display a pro-inflammatory phenotype compared to Dutch subjects, with enhanced activity of the Wnt/b-catenin signalling pathway and higher concentrations of different metabolic regulators such as 4E-BP1 and fibroblast growth factor 21. Among the Tanzanian volunteers, food-derived metabolites were identified as an important driver of variation in inflammation-related molecules, emphasizing the potential importance of lifestyle changes. These findings endorse the importance of the current dietary transition and the inclusion of underrepresented populations in systems immunology studies.

Data availability

Anonymized metadata of the Tanzanian participants and the circulating inflammation markers are available in an open access registry (DANS registry; https://doi.org/10.17026/dans-xgx-zuht) Untargeted plasma metabolome data have been deposited to the EMBL-EBI MetaboLights database (http://www.ebi.ac.uk/metabolights/); study identifier MTBLS2267.The source data of the proteomics analysis are provided in Supplemental Table 5.Publicly available databases used for this study include KEGG (https://www.genome.jp/kegg/), HMDB (https://www.hmdb.ca/) and ChEBI (https://ebi.ac.uk/chebi/). All other data is available in the main text and supplementary materials.

Article and author information

Author details

  1. Godfrey S Temba

    Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1093-3037
  2. Nadira Vadaq

    Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. Vesla Kullaya

    Department of Medical Biochemistry and Molecular Biology, Kilimanjaro Christian Medical Centre, Moshi, United Republic of Tanzania
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6120-3985
  4. Tal Pecht

    Department for Genomics and Immunoregulation, University of Bonn, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Paolo Lionetti

    Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
    Competing interests
    The authors declare that no competing interests exist.
  6. Duccio Cavalieri

    Department of Biology, University of Florence, Sesto Fiorentino (Florence), Italy
    Competing interests
    The authors declare that no competing interests exist.
  7. Joachim L Schultze

    Department for Genomics and Immunoregulation, University of Bonn, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Reginald Kavishe

    Department of Medical Biochemistry and Molecular Biology, Kilimanjaro Christian Medical Centre, Moshi, United Republic of Tanzania
    Competing interests
    The authors declare that no competing interests exist.
  9. Leo AB Joosten

    Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6166-9830
  10. Andre J van der Ven

    Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1833-3391
  11. Blandina T Mmbaga

    Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Centre, Moshi, United Republic of Tanzania
    Competing interests
    The authors declare that no competing interests exist.
  12. Mihai G Netea

    Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2421-6052
  13. Quirijn de Mast

    Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
    For correspondence
    quirijn.demast@radboudumc.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6056-157X

Funding

HORIZON EUROPE European Research Council (the Joint Programming Initiative,A Healthy Diet for a Healthy Life (JPI-HDHL; project 529051018))

  • Mihai G Netea

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Ethical statementThe study was approved by the Ethical Committee of the Kilimanjaro Christian Medical University College (CRERC) (No 2443) and the National Institute for Medical Research (NIMR/HQ/R.8a/Vol. IX/2290 and NIMR/HQ/R.8a/Vol.IX/3318) in Tanzania. The 500FG cohort study was approved by the Ethical Committee of the Radboud University Medical Centre Nijmegen, the Netherlands (NL42561.091.12, 2012/550). Subject recruitment and experimental procedures were conducted according to the principles mentioned in the Declaration of Helsinki. Written informed consent was obtained from all subjects.

Copyright

© 2023, Temba et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 477
    views
  • 82
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Godfrey S Temba
  2. Nadira Vadaq
  3. Vesla Kullaya
  4. Tal Pecht
  5. Paolo Lionetti
  6. Duccio Cavalieri
  7. Joachim L Schultze
  8. Reginald Kavishe
  9. Leo AB Joosten
  10. Andre J van der Ven
  11. Blandina T Mmbaga
  12. Mihai G Netea
  13. Quirijn de Mast
(2023)
Differences in the inflammatory proteome of East African and Western European adults and associations with environmental and dietary factors
eLife 12:e82297.
https://doi.org/10.7554/eLife.82297

Share this article

https://doi.org/10.7554/eLife.82297

Further reading

    1. Cell Biology
    2. Immunology and Inflammation
    Mykhailo Vladymyrov, Luca Marchetti ... Britta Engelhardt
    Tools and Resources

    The endothelial blood-brain barrier (BBB) strictly controls immune cell trafficking into the central nervous system (CNS). In neuroinflammatory diseases such as multiple sclerosis, this tight control is, however, disturbed, leading to immune cell infiltration into the CNS. The development of in vitro models of the BBB combined with microfluidic devices has advanced our understanding of the cellular and molecular mechanisms mediating the multistep T-cell extravasation across the BBB. A major bottleneck of these in vitro studies is the absence of a robust and automated pipeline suitable for analyzing and quantifying the sequential interaction steps of different immune cell subsets with the BBB under physiological flow in vitro. Here, we present the under-flow migration tracker (UFMTrack) framework for studying immune cell interactions with endothelial monolayers under physiological flow. We then showcase a pipeline built based on it to study the entire multistep extravasation cascade of immune cells across brain microvascular endothelial cells under physiological flow in vitro. UFMTrack achieves 90% track reconstruction efficiency and allows for scaling due to the reduction of the analysis cost and by eliminating experimenter bias. This allowed for an in-depth analysis of all behavioral regimes involved in the multistep immune cell extravasation cascade. The study summarizes how UFMTrack can be employed to delineate the interactions of CD4+ and CD8+ T cells with the BBB under physiological flow. We also demonstrate its applicability to the other BBB models, showcasing broader applicability of the developed framework to a range of immune cell-endothelial monolayer interaction studies. The UFMTrack framework along with the generated datasets is publicly available in the corresponding repositories.

    1. Immunology and Inflammation
    Eugenio Antonio Carrera Silva, Juliana Puyssegur, Andrea Emilse Errasti
    Review Article

    The gut biome, a complex ecosystem of micro- and macro-organisms, plays a crucial role in human health. A disruption in this evolutive balance, particularly during early life, can lead to immune dysregulation and inflammatory disorders. ‘Biome repletion’ has emerged as a potential therapeutic approach, introducing live microbes or helminth-derived products to restore immune balance. While helminth therapy has shown some promise, significant challenges remain in optimizing clinical trials. Factors such as patient genetics, disease status, helminth species, and the optimal timing and dosage of their products or metabolites must be carefully considered to train the immune system effectively. We aim to discuss how helminths and their products induce trained immunity as prospective to treat inflammatory and autoimmune diseases. The molecular repertoire of helminth excretory/secretory products (ESPs), which includes proteins, peptides, lipids, and RNA-carrying extracellular vesicles (EVs), underscores their potential to modulate innate immune cells and hematopoietic stem cell precursors. Mimicking natural delivery mechanisms like synthetic exosomes could revolutionize EV-based therapies and optimizing production and delivery of ESP will be crucial for their translation into clinical applications. By deciphering and harnessing helminth-derived products’ diverse modes of action, we can unleash their full therapeutic potential and pave the way for innovative treatments.