Differences in the inflammatory proteome of East African and Western European adults and associations with environmental and dietary factors

  1. Godfrey S Temba
  2. Nadira Vadaq
  3. Vesla Kullaya
  4. Tal Pecht
  5. Paolo Lionetti
  6. Duccio Cavalieri
  7. Joachim L Schultze
  8. Reginald Kavishe
  9. Leo AB Joosten
  10. Andre J van der Ven
  11. Blandina T Mmbaga
  12. Mihai G Netea
  13. Quirijn de Mast  Is a corresponding author
  1. Radboud University Nijmegen Medical Centre, Netherlands
  2. Kilimanjaro Christian Medical Centre, United Republic of Tanzania
  3. University of Bonn, Germany
  4. University of Florence, Italy

Abstract

Non-communicable diseases (NCDs) are rising rapidly in urbanizing populations in sub-Saharan Africa. Assessment of inflammatory and metabolic characteristics of a urbanizing African population and the comparison with populations outside Africa could provide insight in the pathophysiology of the rapidly increasing epidemic of NCDs, including the role of environmental and dietary changes. Using a proteomic plasma profiling approach comprising 92 inflammation-related molecules, we examined differences in the inflammatory proteome in healthy Tanzanian and healthy Dutch adults. We show that healthy Tanzanians display a pro-inflammatory phenotype compared to Dutch subjects, with enhanced activity of the Wnt/b-catenin signalling pathway and higher concentrations of different metabolic regulators such as 4E-BP1 and fibroblast growth factor 21. Among the Tanzanian volunteers, food-derived metabolites were identified as an important driver of variation in inflammation-related molecules, emphasizing the potential importance of lifestyle changes. These findings endorse the importance of the current dietary transition and the inclusion of underrepresented populations in systems immunology studies.

Data availability

Anonymized metadata of the Tanzanian participants and the circulating inflammation markers are available in an open access registry (DANS registry; https://doi.org/10.17026/dans-xgx-zuht) Untargeted plasma metabolome data have been deposited to the EMBL-EBI MetaboLights database (http://www.ebi.ac.uk/metabolights/); study identifier MTBLS2267.The source data of the proteomics analysis are provided in Supplemental Table 5.Publicly available databases used for this study include KEGG (https://www.genome.jp/kegg/), HMDB (https://www.hmdb.ca/) and ChEBI (https://ebi.ac.uk/chebi/). All other data is available in the main text and supplementary materials.

Article and author information

Author details

  1. Godfrey S Temba

    Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1093-3037
  2. Nadira Vadaq

    Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. Vesla Kullaya

    Department of Medical Biochemistry and Molecular Biology, Kilimanjaro Christian Medical Centre, Moshi, United Republic of Tanzania
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6120-3985
  4. Tal Pecht

    Department for Genomics and Immunoregulation, University of Bonn, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Paolo Lionetti

    Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
    Competing interests
    The authors declare that no competing interests exist.
  6. Duccio Cavalieri

    Department of Biology, University of Florence, Sesto Fiorentino (Florence), Italy
    Competing interests
    The authors declare that no competing interests exist.
  7. Joachim L Schultze

    Department for Genomics and Immunoregulation, University of Bonn, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Reginald Kavishe

    Department of Medical Biochemistry and Molecular Biology, Kilimanjaro Christian Medical Centre, Moshi, United Republic of Tanzania
    Competing interests
    The authors declare that no competing interests exist.
  9. Leo AB Joosten

    Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6166-9830
  10. Andre J van der Ven

    Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1833-3391
  11. Blandina T Mmbaga

    Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Centre, Moshi, United Republic of Tanzania
    Competing interests
    The authors declare that no competing interests exist.
  12. Mihai G Netea

    Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2421-6052
  13. Quirijn de Mast

    Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
    For correspondence
    quirijn.demast@radboudumc.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6056-157X

Funding

HORIZON EUROPE European Research Council (the Joint Programming Initiative,A Healthy Diet for a Healthy Life (JPI-HDHL; project 529051018))

  • Mihai G Netea

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Ethical statementThe study was approved by the Ethical Committee of the Kilimanjaro Christian Medical University College (CRERC) (No 2443) and the National Institute for Medical Research (NIMR/HQ/R.8a/Vol. IX/2290 and NIMR/HQ/R.8a/Vol.IX/3318) in Tanzania. The 500FG cohort study was approved by the Ethical Committee of the Radboud University Medical Centre Nijmegen, the Netherlands (NL42561.091.12, 2012/550). Subject recruitment and experimental procedures were conducted according to the principles mentioned in the Declaration of Helsinki. Written informed consent was obtained from all subjects.

Copyright

© 2023, Temba et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 390
    views
  • 70
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Godfrey S Temba
  2. Nadira Vadaq
  3. Vesla Kullaya
  4. Tal Pecht
  5. Paolo Lionetti
  6. Duccio Cavalieri
  7. Joachim L Schultze
  8. Reginald Kavishe
  9. Leo AB Joosten
  10. Andre J van der Ven
  11. Blandina T Mmbaga
  12. Mihai G Netea
  13. Quirijn de Mast
(2023)
Differences in the inflammatory proteome of East African and Western European adults and associations with environmental and dietary factors
eLife 12:e82297.
https://doi.org/10.7554/eLife.82297

Share this article

https://doi.org/10.7554/eLife.82297

Further reading

    1. Immunology and Inflammation
    Eva M García-Cuesta, Pablo Martínez ... Mario Mellado
    Research Article

    CXCR4 is a ubiquitously expressed chemokine receptor that regulates leukocyte trafficking and arrest in both homeostatic and pathological states. It also participates in organogenesis, HIV-1 infection, and tumor development. Despite the potential therapeutic benefit of CXCR4 antagonists, only one, plerixafor (AMD3100), which blocks the ligand-binding site, has reached the clinic. Recent advances in imaging and biophysical techniques have provided a richer understanding of the membrane organization and dynamics of this receptor. Activation of CXCR4 by CXCL12 reduces the number of CXCR4 monomers/dimers at the cell membrane and increases the formation of large nanoclusters, which are largely immobile and are required for correct cell orientation to chemoattractant gradients. Mechanistically, CXCR4 activation involves a structural motif defined by residues in TMV and TMVI. Using this structural motif as a template, we performed in silico molecular modeling followed by in vitro screening of a small compound library to identify negative allosteric modulators of CXCR4 that do not affect CXCL12 binding. We identified AGR1.137, a small molecule that abolishes CXCL12-mediated receptor nanoclustering and dynamics and blocks the ability of cells to sense CXCL12 gradients both in vitro and in vivo while preserving ligand binding and receptor internalization.

    1. Computational and Systems Biology
    2. Immunology and Inflammation
    Jing Sun, Desmond Choy ... Shahram Kordasti
    Tools and Resources

    Mass cytometry is a cutting-edge high-dimensional technology for profiling marker expression at the single-cell level, advancing clinical research in immune monitoring. Nevertheless, the vast data generated by cytometry by time-of-flight (CyTOF) poses a significant analytical challenge. To address this, we describe ImmCellTyper (https://github.com/JingAnyaSun/ImmCellTyper), a novel toolkit for CyTOF data analysis. This framework incorporates BinaryClust, an in-house developed semi-supervised clustering tool that automatically identifies main cell types. BinaryClust outperforms existing clustering tools in accuracy and speed, as shown in benchmarks with two datasets of approximately 4 million cells, matching the precision of manual gating by human experts. Furthermore, ImmCellTyper offers various visualisation and analytical tools, spanning from quality control to differential analysis, tailored to users’ specific needs for a comprehensive CyTOF data analysis solution. The workflow includes five key steps: (1) batch effect evaluation and correction, (2) data quality control and pre-processing, (3) main cell lineage characterisation and quantification, (4) in-depth investigation of specific cell types; and (5) differential analysis of cell abundance and functional marker expression across study groups. Overall, ImmCellTyper combines expert biological knowledge in a semi-supervised approach to accurately deconvolute well-defined main cell lineages, while maintaining the potential of unsupervised methods to discover novel cell subsets, thus facilitating high-dimensional immune profiling.