Differences in the inflammatory proteome of East African and Western European adults and associations with environmental and dietary factors

  1. Godfrey S Temba
  2. Nadira Vadaq
  3. Vesla Kullaya
  4. Tal Pecht
  5. Paolo Lionetti
  6. Duccio Cavalieri
  7. Joachim L Schultze
  8. Reginald Kavishe
  9. Leo AB Joosten
  10. Andre J van der Ven
  11. Blandina T Mmbaga
  12. Mihai G Netea
  13. Quirijn de Mast  Is a corresponding author
  1. Radboud University Nijmegen Medical Centre, Netherlands
  2. Kilimanjaro Christian Medical Centre, United Republic of Tanzania
  3. University of Bonn, Germany
  4. University of Florence, Italy

Abstract

Non-communicable diseases (NCDs) are rising rapidly in urbanizing populations in sub-Saharan Africa. Assessment of inflammatory and metabolic characteristics of a urbanizing African population and the comparison with populations outside Africa could provide insight in the pathophysiology of the rapidly increasing epidemic of NCDs, including the role of environmental and dietary changes. Using a proteomic plasma profiling approach comprising 92 inflammation-related molecules, we examined differences in the inflammatory proteome in healthy Tanzanian and healthy Dutch adults. We show that healthy Tanzanians display a pro-inflammatory phenotype compared to Dutch subjects, with enhanced activity of the Wnt/b-catenin signalling pathway and higher concentrations of different metabolic regulators such as 4E-BP1 and fibroblast growth factor 21. Among the Tanzanian volunteers, food-derived metabolites were identified as an important driver of variation in inflammation-related molecules, emphasizing the potential importance of lifestyle changes. These findings endorse the importance of the current dietary transition and the inclusion of underrepresented populations in systems immunology studies.

Data availability

Anonymized metadata of the Tanzanian participants and the circulating inflammation markers are available in an open access registry (DANS registry; https://doi.org/10.17026/dans-xgx-zuht) Untargeted plasma metabolome data have been deposited to the EMBL-EBI MetaboLights database (http://www.ebi.ac.uk/metabolights/); study identifier MTBLS2267.The source data of the proteomics analysis are provided in Supplemental Table 5.Publicly available databases used for this study include KEGG (https://www.genome.jp/kegg/), HMDB (https://www.hmdb.ca/) and ChEBI (https://ebi.ac.uk/chebi/). All other data is available in the main text and supplementary materials.

Article and author information

Author details

  1. Godfrey S Temba

    Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1093-3037
  2. Nadira Vadaq

    Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. Vesla Kullaya

    Department of Medical Biochemistry and Molecular Biology, Kilimanjaro Christian Medical Centre, Moshi, United Republic of Tanzania
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6120-3985
  4. Tal Pecht

    Department for Genomics and Immunoregulation, University of Bonn, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Paolo Lionetti

    Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
    Competing interests
    The authors declare that no competing interests exist.
  6. Duccio Cavalieri

    Department of Biology, University of Florence, Sesto Fiorentino (Florence), Italy
    Competing interests
    The authors declare that no competing interests exist.
  7. Joachim L Schultze

    Department for Genomics and Immunoregulation, University of Bonn, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Reginald Kavishe

    Department of Medical Biochemistry and Molecular Biology, Kilimanjaro Christian Medical Centre, Moshi, United Republic of Tanzania
    Competing interests
    The authors declare that no competing interests exist.
  9. Leo AB Joosten

    Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6166-9830
  10. Andre J van der Ven

    Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1833-3391
  11. Blandina T Mmbaga

    Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Centre, Moshi, United Republic of Tanzania
    Competing interests
    The authors declare that no competing interests exist.
  12. Mihai G Netea

    Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2421-6052
  13. Quirijn de Mast

    Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
    For correspondence
    quirijn.demast@radboudumc.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6056-157X

Funding

HORIZON EUROPE European Research Council (the Joint Programming Initiative,A Healthy Diet for a Healthy Life (JPI-HDHL; project 529051018))

  • Mihai G Netea

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Mauro Martins Teixeira, Universidade Federal de Minas Gerais, Brazil

Ethics

Human subjects: Ethical statementThe study was approved by the Ethical Committee of the Kilimanjaro Christian Medical University College (CRERC) (No 2443) and the National Institute for Medical Research (NIMR/HQ/R.8a/Vol. IX/2290 and NIMR/HQ/R.8a/Vol.IX/3318) in Tanzania. The 500FG cohort study was approved by the Ethical Committee of the Radboud University Medical Centre Nijmegen, the Netherlands (NL42561.091.12, 2012/550). Subject recruitment and experimental procedures were conducted according to the principles mentioned in the Declaration of Helsinki. Written informed consent was obtained from all subjects.

Version history

  1. Received: July 29, 2022
  2. Preprint posted: August 25, 2022 (view preprint)
  3. Accepted: August 8, 2023
  4. Accepted Manuscript published: August 9, 2023 (version 1)
  5. Version of Record published: September 1, 2023 (version 2)

Copyright

© 2023, Temba et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 330
    views
  • 65
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Godfrey S Temba
  2. Nadira Vadaq
  3. Vesla Kullaya
  4. Tal Pecht
  5. Paolo Lionetti
  6. Duccio Cavalieri
  7. Joachim L Schultze
  8. Reginald Kavishe
  9. Leo AB Joosten
  10. Andre J van der Ven
  11. Blandina T Mmbaga
  12. Mihai G Netea
  13. Quirijn de Mast
(2023)
Differences in the inflammatory proteome of East African and Western European adults and associations with environmental and dietary factors
eLife 12:e82297.
https://doi.org/10.7554/eLife.82297

Share this article

https://doi.org/10.7554/eLife.82297

Further reading

    1. Immunology and Inflammation
    Tong Feng, Qi Zhang ... Qiao-Feng Wu
    Research Article

    Osteoarthritis (OA) is a degenerative disease with a high prevalence in the elderly population, but our understanding of its mechanisms remains incomplete. Analysis of serum exosomal small RNA sequencing data from clinical patients and gene expression data from OA patient serum and cartilage obtained from the GEO database revealed a common dysregulated miRNA, miR-199b-5p. In vitro cell experiments demonstrated that miR-199b-5p inhibits chondrocyte vitality and promotes extracellular matrix degradation. Conversely, inhibition of miR-199b-5p under inflammatory conditions exhibited protective effects against damage. Local viral injection of miR-199b-5p into mice induced a decrease in pain threshold and OA-like changes. In an OA model, inhibition of miR-199b-5p alleviated the pathological progression of OA. Furthermore, bioinformatics analysis and experimental validation identified Gcnt2 and Fzd6 as potential target genes of MiR-199b-5p. Thus, these results indicated that MiR-199b-5p/Gcnt2 and Fzd6 axis might be a novel therapeutic target for the treatment of OA.

    1. Immunology and Inflammation
    Phillip A Erice, Xinyan Huang ... Antony Rodriguez
    Research Article

    Environmental air irritants including nanosized carbon black (nCB) can drive systemic inflammation, promoting chronic obstructive pulmonary disease (COPD) and emphysema development. The let-7 microRNA (Mirlet7 miRNA) family is associated with IL-17-driven T cell inflammation, a canonical signature of lung inflammation. Recent evidence suggests the Mirlet7 family is downregulated in patients with COPD, however, whether this repression conveys a functional consequence on emphysema pathology has not been elucidated. Here, we show that overall expression of the Mirlet7 clusters, Mirlet7b/Mirlet7c2 and Mirlet7a1/Mirlet7f1/Mirlet7d, are reduced in the lungs and T cells of smokers with emphysema as well as in mice with cigarette smoke (CS)- or nCB-elicited emphysema. We demonstrate that loss of the Mirlet7b/Mirlet7c2 cluster in T cells predisposed mice to exaggerated CS- or nCB-elicited emphysema. Furthermore, ablation of the Mirlet7b/Mirlet7c2 cluster enhanced CD8+IL17a+ T cells (Tc17) formation in emphysema development in mice. Additionally, transgenic mice overexpressing Mirlet7g in T cells are resistant to Tc17 and CD4+IL17a+ T cells (Th17) development when exposed to nCB. Mechanistically, our findings reveal the master regulator of Tc17/Th17 differentiation, RAR-related orphan receptor gamma t (RORγt), as a direct target of Mirlet7 in T cells. Overall, our findings shed light on the Mirlet7/RORγt axis with Mirlet7 acting as a molecular brake in the generation of Tc17 cells and suggest a novel therapeutic approach for tempering the augmented IL-17-mediated response in emphysema.