A model of hippocampal replay driven by experience and environmental structure facilitates spatial learning
Abstract
Replay of neuronal sequences in the hippocampus during resting states and sleep play an important role in learning and memory consolidation. Consistent with these functions, replay sequences have been shown to obey current spatial constraints. Nevertheless, replay does not necessarily reflect previous behavior and can construct never-experienced sequences. Here we propose a stochastic replay mechanism that prioritizes experiences based on three variables: 1. Experience strength, 2. experience similarity, and 3. inhibition of return. Using this prioritized replay mechanism to train reinforcement learning agents leads to far better performance than using random replay. Its performance is close to the state-of-the-art, but computationally intensive, algorithm by Mattar & Daw (2018). Importantly, our model reproduces diverse types of replay because of the stochasticity of the replay mechanism and experience-dependent differences between the three variables. In conclusion, a unified replay mechanism generates diverse replay statistics and is efficient in driving spatial learning.
Data availability
The current manuscript is a computational study, so no data have been generated for this manuscript. Modelling code has been made publicly available at https://github.com/sencheng/-Mechanisms-and-Functions-of-Hippocampal-Replay.
Article and author information
Author details
Funding
Deutsche Forschungsgemeinschaft (419037518 - FOR 2812 P2)
- Sen Cheng
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2023, Diekmann & Cheng
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
Chronic pain is a prevalent and debilitating condition whose neural mechanisms are incompletely understood. An imbalance of cerebral excitation and inhibition (E/I), particularly in the medial prefrontal cortex (mPFC), is believed to represent a crucial mechanism in the development and maintenance of chronic pain. Thus, identifying a non-invasive, scalable marker of E/I could provide valuable insights into the neural mechanisms of chronic pain and aid in developing clinically useful biomarkers. Recently, the aperiodic component of the electroencephalography (EEG) power spectrum has been proposed to represent a non-invasive proxy for E/I. We, therefore, assessed the aperiodic component in the mPFC of resting-state EEG recordings in 149 people with chronic pain and 115 healthy participants. We found robust evidence against differences in the aperiodic component in the mPFC between people with chronic pain and healthy participants, and no correlation between the aperiodic component and pain intensity. These findings were consistent across different subtypes of chronic pain and were similarly found in a whole-brain analysis. Their robustness was supported by preregistration and multiverse analyses across many different methodological choices. Together, our results suggest that the EEG aperiodic component does not differentiate between people with chronic pain and healthy individuals. These findings and the rigorous methodological approach can guide future studies investigating non-invasive, scalable markers of cerebral dysfunction in people with chronic pain and beyond.
-
- Neuroscience
Biological memory networks are thought to store information by experience-dependent changes in the synaptic connectivity between assemblies of neurons. Recent models suggest that these assemblies contain both excitatory and inhibitory neurons (E/I assemblies), resulting in co-tuning and precise balance of excitation and inhibition. To understand computational consequences of E/I assemblies under biologically realistic constraints we built a spiking network model based on experimental data from telencephalic area Dp of adult zebrafish, a precisely balanced recurrent network homologous to piriform cortex. We found that E/I assemblies stabilized firing rate distributions compared to networks with excitatory assemblies and global inhibition. Unlike classical memory models, networks with E/I assemblies did not show discrete attractor dynamics. Rather, responses to learned inputs were locally constrained onto manifolds that ‘focused’ activity into neuronal subspaces. The covariance structure of these manifolds supported pattern classification when information was retrieved from selected neuronal subsets. Networks with E/I assemblies therefore transformed the geometry of neuronal coding space, resulting in continuous representations that reflected both relatedness of inputs and an individual’s experience. Such continuous representations enable fast pattern classification, can support continual learning, and may provide a basis for higher-order learning and cognitive computations.