Intermediate filament network perturbation in the C. elegans intestine causes systemic dysfunctions

  1. Florian Geisler
  2. Sanne Remmelzwaal
  3. Vera Jankowski
  4. Ruben Schmidt
  5. Mike Boxem
  6. Rudolf E Leube  Is a corresponding author
  1. RWTH Aachen University, Germany
  2. Utrecht University, Netherlands
  3. Universitätsklinikum Aachen, Germany

Abstract

Intermediate filaments (IFs) are major components of the metazoan cytoskeleton. A long-standing debate concerns the question whether IF network organization only reflects or also determines cell and tissue function. Using C. elegans, we have recently described mutants of the MAPK SMA-5 which perturb the organization of the intestinal IF cytoskeleton resulting in luminal widening and cytoplasmic invaginations. Besides these structural phenotypes, systemic dysfunctions were also observed. We now identify the IF polypeptide IFB-2 as a highly efficient suppressor of both the structural and functional deficiencies of sma-5 animals, by removing the aberrant IF network. Mechanistically, perturbed IF network morphogenesis is linked to hyperphosphorylation of multiple sites throughout the entire IFB-2 molecule. The rescuing capability is IF isotype-specific and not restricted to SMA-5 mutants but extends to mutants that disrupt the function of the cytoskeletal linker IFO-1 and the IF-associated protein BBLN1. The findings provide strong evidence for adverse consequences of the deranged IF networks with implications for diseases that are characterized by altered IF network organization.

Data availability

The authors confirm that all relevant data are included in the article.

Article and author information

Author details

  1. Florian Geisler

    Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Sanne Remmelzwaal

    Department of Biology, Utrecht University, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. Vera Jankowski

    Institute for Molecular Cardiovascular Research, Universitätsklinikum Aachen, Aachen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Ruben Schmidt

    Department of Biology, Utrecht University, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9187-5424
  5. Mike Boxem

    Department of Biology, Utrecht University, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3966-4173
  6. Rudolf E Leube

    Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
    For correspondence
    rleube@ukaachen.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5519-7379

Funding

Deutsche Forschungsgemeinschaft (LE566/14-1,3)

  • Rudolf E Leube

Nederlandse Organisatie voor Wetenschappelijk Onderzoek ((NWO)-VICI 016.VICI.170.165)

  • Mike Boxem

Deutsche Forschungsgemeinschaft (INST 948/4S-1)

  • Vera Jankowski

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Geisler et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 782
    views
  • 101
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Florian Geisler
  2. Sanne Remmelzwaal
  3. Vera Jankowski
  4. Ruben Schmidt
  5. Mike Boxem
  6. Rudolf E Leube
(2023)
Intermediate filament network perturbation in the C. elegans intestine causes systemic dysfunctions
eLife 12:e82333.
https://doi.org/10.7554/eLife.82333

Share this article

https://doi.org/10.7554/eLife.82333

Further reading

    1. Cell Biology
    Kaili Du, Hongyu Chen ... Dan Li
    Research Article

    Niemann–Pick disease type C (NPC) is a devastating lysosomal storage disease characterized by abnormal cholesterol accumulation in lysosomes. Currently, there is no treatment for NPC. Transcription factor EB (TFEB), a member of the microphthalmia transcription factors (MiTF), has emerged as a master regulator of lysosomal function and promoted the clearance of substrates stored in cells. However, it is not known whether TFEB plays a role in cholesterol clearance in NPC disease. Here, we show that transgenic overexpression of TFEB, but not TFE3 (another member of MiTF family) facilitates cholesterol clearance in various NPC1 cell models. Pharmacological activation of TFEB by sulforaphane (SFN), a previously identified natural small-molecule TFEB agonist by us, can dramatically ameliorate cholesterol accumulation in human and mouse NPC1 cell models. In NPC1 cells, SFN induces TFEB nuclear translocation via a ROS-Ca2+-calcineurin-dependent but MTOR-independent pathway and upregulates the expression of TFEB-downstream genes, promoting lysosomal exocytosis and biogenesis. While genetic inhibition of TFEB abolishes the cholesterol clearance and exocytosis effect by SFN. In the NPC1 mouse model, SFN dephosphorylates/activates TFEB in the brain and exhibits potent efficacy of rescuing the loss of Purkinje cells and body weight. Hence, pharmacological upregulating lysosome machinery via targeting TFEB represents a promising approach to treat NPC and related lysosomal storage diseases, and provides the possibility of TFEB agonists, that is, SFN as potential NPC therapeutic candidates.

    1. Cell Biology
    2. Developmental Biology
    Sarah Y Coomson, Salil A Lachke
    Insight

    A study in mice reveals key interactions between proteins involved in fibroblast growth factor signaling and how they contribute to distinct stages of eye lens development.