Intermediate filament network perturbation in the C. elegans intestine causes systemic dysfunctions

  1. Florian Geisler
  2. Sanne Remmelzwaal
  3. Vera Jankowski
  4. Ruben Schmidt
  5. Mike Boxem
  6. Rudolf E Leube  Is a corresponding author
  1. RWTH Aachen University, Germany
  2. Utrecht University, Netherlands
  3. Universitätsklinikum Aachen, Germany

Abstract

Intermediate filaments (IFs) are major components of the metazoan cytoskeleton. A long-standing debate concerns the question whether IF network organization only reflects or also determines cell and tissue function. Using C. elegans, we have recently described mutants of the MAPK SMA-5 which perturb the organization of the intestinal IF cytoskeleton resulting in luminal widening and cytoplasmic invaginations. Besides these structural phenotypes, systemic dysfunctions were also observed. We now identify the IF polypeptide IFB-2 as a highly efficient suppressor of both the structural and functional deficiencies of sma-5 animals, by removing the aberrant IF network. Mechanistically, perturbed IF network morphogenesis is linked to hyperphosphorylation of multiple sites throughout the entire IFB-2 molecule. The rescuing capability is IF isotype-specific and not restricted to SMA-5 mutants but extends to mutants that disrupt the function of the cytoskeletal linker IFO-1 and the IF-associated protein BBLN1. The findings provide strong evidence for adverse consequences of the deranged IF networks with implications for diseases that are characterized by altered IF network organization.

Data availability

The authors confirm that all relevant data are included in the article.

Article and author information

Author details

  1. Florian Geisler

    Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Sanne Remmelzwaal

    Department of Biology, Utrecht University, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. Vera Jankowski

    Institute for Molecular Cardiovascular Research, Universitätsklinikum Aachen, Aachen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Ruben Schmidt

    Department of Biology, Utrecht University, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9187-5424
  5. Mike Boxem

    Department of Biology, Utrecht University, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3966-4173
  6. Rudolf E Leube

    Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
    For correspondence
    rleube@ukaachen.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5519-7379

Funding

Deutsche Forschungsgemeinschaft (LE566/14-1,3)

  • Rudolf E Leube

Nederlandse Organisatie voor Wetenschappelijk Onderzoek ((NWO)-VICI 016.VICI.170.165)

  • Mike Boxem

Deutsche Forschungsgemeinschaft (INST 948/4S-1)

  • Vera Jankowski

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Geisler et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 712
    views
  • 96
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Florian Geisler
  2. Sanne Remmelzwaal
  3. Vera Jankowski
  4. Ruben Schmidt
  5. Mike Boxem
  6. Rudolf E Leube
(2023)
Intermediate filament network perturbation in the C. elegans intestine causes systemic dysfunctions
eLife 12:e82333.
https://doi.org/10.7554/eLife.82333

Share this article

https://doi.org/10.7554/eLife.82333

Further reading

    1. Cell Biology
    2. Developmental Biology
    Heungjin Ryu, Kibum Nam ... Jung-Hoon Park
    Research Article

    In most murine species, spermatozoa exhibit a falciform apical hook at the head end. The function of the sperm hook is not yet clearly understood. In this study, we investigate the role of the sperm hook in the migration of spermatozoa through the female reproductive tract in Mus musculus (C57BL/6), using a deep tissue imaging custom-built two-photon microscope. Through live reproductive tract imaging, we found evidence indicating that the sperm hook aids in the attachment of spermatozoa to the epithelium and facilitates interactions between spermatozoa and the epithelium during migration in the uterus and oviduct. We also observed synchronized sperm beating, which resulted from the spontaneous unidirectional rearrangement of spermatozoa in the uterus. Based on live imaging of spermatozoa-epithelium interaction dynamics, we propose that the sperm hook plays a crucial role in successful migration through the female reproductive tract by providing anchor-like mechanical support and facilitating interactions between spermatozoa and the female reproductive tract in the house mouse.

    1. Cell Biology
    Fatima Tleiss, Martina Montanari ... C Leopold Kurz
    Research Article

    Multiple gut antimicrobial mechanisms are coordinated in space and time to efficiently fight foodborne pathogens. In Drosophila melanogaster, production of reactive oxygen species (ROS) and antimicrobial peptides (AMPs) together with intestinal cell renewal play a key role in eliminating gut microbes. A complementary mechanism would be to isolate and treat pathogenic bacteria while allowing colonization by commensals. Using real-time imaging to follow the fate of ingested bacteria, we demonstrate that while commensal Lactiplantibacillus plantarum freely circulate within the intestinal lumen, pathogenic strains such as Erwinia carotovora or Bacillus thuringiensis, are blocked in the anterior midgut where they are rapidly eliminated by antimicrobial peptides. This sequestration of pathogenic bacteria in the anterior midgut requires the Duox enzyme in enterocytes, and both TrpA1 and Dh31 in enteroendocrine cells. Supplementing larval food with hCGRP, the human homolog of Dh31, is sufficient to block the bacteria, suggesting the existence of a conserved mechanism. While the immune deficiency (IMD) pathway is essential for eliminating the trapped bacteria, it is dispensable for the blockage. Genetic manipulations impairing bacterial compartmentalization result in abnormal colonization of posterior midgut regions by pathogenic bacteria. Despite a functional IMD pathway, this ectopic colonization leads to bacterial proliferation and larval death, demonstrating the critical role of bacteria anterior sequestration in larval defense. Our study reveals a temporal orchestration during which pathogenic bacteria, but not innocuous, are confined in the anterior part of the midgut in which they are eliminated in an IMD-pathway-dependent manner.