Longitudinal fundus imaging and its genome-wide association analysis provide evidence for a human retinal aging clock

  1. Sara Ahadi  Is a corresponding author
  2. Kenneth A Wilson Jr
  3. Boris Babenko
  4. Cory Y McLean  Is a corresponding author
  5. Drew Bryant
  6. Orion Pritchard
  7. Ajay Kumar
  8. Enrique M Carrera
  9. Ricardo Lamy
  10. Jay M Stewart
  11. Avinash Varadarajan
  12. Marc Berndl
  13. Pankaj Kapahi  Is a corresponding author
  14. Ali Bashir
  1. Google Research, United States
  2. Buck Institute for Research on Aging, United States
  3. Google Health, United States
  4. Post Graduate Institute of Medical Education and Research, India
  5. Zuckerberg San Francisco General Hospital, United States
  6. University of California, San Francisco, United States

Abstract

Biological age, distinct from an individual's chronological age, has been studied extensively through predictive aging clocks. However, these clocks have limited accuracy in short time-scales. Here we trained deep learning models on fundus images from the EyePACS dataset to predict individuals' chronological age. Our retinal aging clocking, 'eyeAge', predicted chronological age more accurately than other aging clocks (mean absolute error of 2.86 and 3.30 years on quality-filtered data from EyePACS and UK Biobank, respectively). Additionally, eyeAge was independent of blood marker-based measures of biological age, maintaining an all-cause mortality hazard ratio of 1.026 even when adjusted for phenotypic age. The individual-specific nature of eyeAge was reinforced via multiple GWAS hits in the UK Biobank cohort. The top GWAS locus was further validated via knockdown of the fly homolog, Alk, which slowed age-related decline in vision in flies. This study demonstrates the potential utility of a retinal aging clock for studying aging and age-related diseases and quantitatively measuring aging on very short time-scales, opening avenues for quick and actionable evaluation of gero-protective therapeutics.

Data availability

A subset of EyePACS data is freely available online (https://www.kaggle.com/competitions/diabetic-retinopathy-detection/data). To enquire about access to the full EyePACS dataset, researchers should contact Jorge Cuadros (jcuadros@eyepacs.com). Proposals and agreements are assessed internally at EyePACS and may be subject to ethics approvals. The UKB data are available for approved projects (application process detailed at https://www.ukbiobank.ac.uk/enable-your-research/apply-for-access) through the UK Biobank Access Management System (https://www.ukbiobank.ac.uk) . We have deposited the derived data fields and model predictions following UKB policy, which will be available through the UK Biobank Access Management System. Full GWAS summary statistics are available in the Supplementary File. To develop the eyeAge model we used the TensorFlow deep learning framework, available at https://www.tensorflow.org . Code and detailed instructions for both model training and prediction of chronological age from fundus images is open-source and freely available as a minor modification (https://gist.github.com/cmclean/a7e01b916f07955b2693112dcd3edb60) of our previously published repository for fundus model training (https://zenodo.org/record/7154413).

The following previously published data sets were used

Article and author information

Author details

  1. Sara Ahadi

    Google Research, Mountain View, United States
    For correspondence
    saraahadi@gmail.com
    Competing interests
    Sara Ahadi, Sara Ahadi is not currently affiliated with Google Research, however work for this manuscript was conducted while affiliated with Google Research. The author has no other competing interests to declare..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7849-2135
  2. Kenneth A Wilson Jr

    Kapahi Lab, Buck Institute for Research on Aging, Novato, United States
    Competing interests
    No competing interests declared.
  3. Boris Babenko

    Google Health, Palo Alto, United States
    Competing interests
    Boris Babenko, Boris Babenko is affiliated with Google Health. The author has no other competing interests to declare..
  4. Cory Y McLean

    Google Health, Cambridge, United States
    For correspondence
    cym@google.com
    Competing interests
    Cory Y McLean, Cory Y McLean is affiliated with Google Health. The author has no other competing interests to declare..
  5. Drew Bryant

    Google Research, Mountain View, United States
    Competing interests
    Drew Bryant, Drew Bryant is affiliated with Google Research. The author has no other competing interests to declare..
  6. Orion Pritchard

    Google Research, Mountain View, United States
    Competing interests
    Orion Pritchard, Orion Pritchard is affiliated with Google Research. The author has no other competing interests to declare..
  7. Ajay Kumar

    Department of Biophysics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
    Competing interests
    No competing interests declared.
  8. Enrique M Carrera

    Kapahi Lab, Buck Institute for Research on Aging, Novato, United States
    Competing interests
    No competing interests declared.
  9. Ricardo Lamy

    Department of Ophthalmology, Zuckerberg San Francisco General Hospital, San Francisco, United States
    Competing interests
    No competing interests declared.
  10. Jay M Stewart

    Department of Ophthalmology, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  11. Avinash Varadarajan

    Google Health, Palo Alto, United States
    Competing interests
    Avinash Varadarajan, Avinash Varadarajan is affiliated with Google Health. The author has no other competing interests to declare..
  12. Marc Berndl

    Google Research, Mountain View, United States
    Competing interests
    Marc Berndl, Marc Berndl is affiliated with Google Research. The author has no other competing interests to declare..
  13. Pankaj Kapahi

    Kapahi Lab, Buck Institute for Research on Aging, Novato, United States
    For correspondence
    Pkapahi@buckinstitute.org
    Competing interests
    Pankaj Kapahi, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5629-4947
  14. Ali Bashir

    Google Research, Mountain View, United States
    Competing interests
    Ali Bashir, Ali Bashir is not currently affiliated with Google Research, however work for this manuscript was conducted while affiliated with Google Research. The author has no other competing interests to declare..

Funding

NIH (T32AG000266-23)

  • Kenneth A Wilson Jr

NIH (R01AG038688)

  • Pankaj Kapahi

NIH (AG045835)

  • Pankaj Kapahi

Larry L. Hillblom Foundation

  • Pankaj Kapahi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The UK Biobank study was reviewed and approved by the North West Multi-Centre Research Ethics Committee. For the EyePACS study, ethics review and IRB exemption was obtained using Quorum Review IRB (Seattle, WA).

Copyright

© 2023, Ahadi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,502
    views
  • 707
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sara Ahadi
  2. Kenneth A Wilson Jr
  3. Boris Babenko
  4. Cory Y McLean
  5. Drew Bryant
  6. Orion Pritchard
  7. Ajay Kumar
  8. Enrique M Carrera
  9. Ricardo Lamy
  10. Jay M Stewart
  11. Avinash Varadarajan
  12. Marc Berndl
  13. Pankaj Kapahi
  14. Ali Bashir
(2023)
Longitudinal fundus imaging and its genome-wide association analysis provide evidence for a human retinal aging clock
eLife 12:e82364.
https://doi.org/10.7554/eLife.82364

Share this article

https://doi.org/10.7554/eLife.82364

Further reading

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    Shinichi Kawaguchi, Xin Xu ... Toshie Kai
    Research Article

    Protein–protein interactions are fundamental to understanding the molecular functions and regulation of proteins. Despite the availability of extensive databases, many interactions remain uncharacterized due to the labor-intensive nature of experimental validation. In this study, we utilized the AlphaFold2 program to predict interactions among proteins localized in the nuage, a germline-specific non-membrane organelle essential for piRNA biogenesis in Drosophila. We screened 20 nuage proteins for 1:1 interactions and predicted dimer structures. Among these, five represented novel interaction candidates. Three pairs, including Spn-E_Squ, were verified by co-immunoprecipitation. Disruption of the salt bridges at the Spn-E_Squ interface confirmed their functional importance, underscoring the predictive model’s accuracy. We extended our analysis to include interactions between three representative nuage components—Vas, Squ, and Tej—and approximately 430 oogenesis-related proteins. Co-immunoprecipitation verified interactions for three pairs: Mei-W68_Squ, CSN3_Squ, and Pka-C1_Tej. Furthermore, we screened the majority of Drosophila proteins (~12,000) for potential interaction with the Piwi protein, a central player in the piRNA pathway, identifying 164 pairs as potential binding partners. This in silico approach not only efficiently identifies potential interaction partners but also significantly bridges the gap by facilitating the integration of bioinformatics and experimental biology.

    1. Computational and Systems Biology
    2. Neuroscience
    Brian DePasquale, Carlos D Brody, Jonathan W Pillow
    Research Article Updated

    Accumulating evidence to make decisions is a core cognitive function. Previous studies have tended to estimate accumulation using either neural or behavioral data alone. Here, we develop a unified framework for modeling stimulus-driven behavior and multi-neuron activity simultaneously. We applied our method to choices and neural recordings from three rat brain regions—the posterior parietal cortex (PPC), the frontal orienting fields (FOF), and the anterior-dorsal striatum (ADS)—while subjects performed a pulse-based accumulation task. Each region was best described by a distinct accumulation model, which all differed from the model that best described the animal’s choices. FOF activity was consistent with an accumulator where early evidence was favored while the ADS reflected near perfect accumulation. Neural responses within an accumulation framework unveiled a distinct association between each brain region and choice. Choices were better predicted from all regions using a comprehensive, accumulation-based framework and different brain regions were found to differentially reflect choice-related accumulation signals: FOF and ADS both reflected choice but ADS showed more instances of decision vacillation. Previous studies relating neural data to behaviorally inferred accumulation dynamics have implicitly assumed that individual brain regions reflect the whole-animal level accumulator. Our results suggest that different brain regions represent accumulated evidence in dramatically different ways and that accumulation at the whole-animal level may be constructed from a variety of neural-level accumulators.