SIMMER employs similarity algorithms to accurately identify human gut microbiome species and enzymes capable of known chemical transformations
Abstract
Bacteria within the gut microbiota possess the ability to metabolize a wide array of human drugs, foods, and toxins, but the responsible enzymes for these chemical events remain largely uncharacterized due to the time-consuming nature of current experimental approaches. Attempts have been made in the past to computationally predict which bacterial species and enzymes are responsible for chemical transformations in the gut environment, but with low accuracy due to minimal chemical representation and sequence similarity search schemes. Here, we present an in silico approach that employs chemical and protein Similarity algorithms that Identify MicrobioMe Enzymatic Reactions (SIMMER). We show that SIMMER accurately predicts the responsible species and enzymes for a queried reaction, unlike previous methods. We demonstrate SIMMER use cases in the context of drug metabolism by predicting previously uncharacterized enzymes for 88 drug transformations known to occur in the human gut. We validate these predictions on external datasets and provide an in vitro validation of SIMMER's predictions for metabolism of methotrexate, an anti-arthritic drug. After demonstrating its utility and accuracy, we made SIMMER available as both a command-line and web tool, with flexible input and output options for determining chemical transformations within the human gut. We present SIMMER as a computational addition to the microbiome researcher's toolbox, enabling them to make informed hypotheses before embarking on the lengthy laboratory experiments required to characterize novel bacterial enzymes that can alter human ingested compounds.
Data availability
Data generated and analyzed during this study are provided in Figures 2-10 source data files, Table 1 source data file, supplemental files, and at https://github.com/aebustion/SIMMER. Accession numbers of previously published datasets are provided in the Materials and Methods section. SIMMER code can either be run at the SIMMER website (https://simmer.pollard.gladstone.org/) or downloaded directly from the above-linked GitHub.
Article and author information
Author details
Funding
PhRMA Foundation (Predoctoral Fellowship)
- Annamarie E Bustion
ARCS Foundation (Graduate Student Scholarship)
- Annamarie E Bustion
UCSF Benioff Center for Microbiome Medicine (Trainee Pilot Award)
- Annamarie E Bustion
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2023, Bustion et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,853
- views
-
- 161
- downloads
-
- 7
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Biochemistry and Chemical Biology
- Microbiology and Infectious Disease
Mycofactocin is a redox cofactor essential for the alcohol metabolism of mycobacteria. While the biosynthesis of mycofactocin is well established, the gene mftG, which encodes an oxidoreductase of the glucose-methanol-choline superfamily, remained functionally uncharacterized. Here, we show that MftG enzymes are almost exclusively found in genomes containing mycofactocin biosynthetic genes and are present in 75% of organisms harboring these genes. Gene deletion experiments in Mycolicibacterium smegmatis demonstrated a growth defect of the ∆mftG mutant on ethanol as a carbon source, accompanied by an arrest of cell division reminiscent of mild starvation. Investigation of carbon and cofactor metabolism implied a defect in mycofactocin reoxidation. Cell-free enzyme assays and respirometry using isolated cell membranes indicated that MftG acts as a mycofactocin dehydrogenase shuttling electrons toward the respiratory chain. Transcriptomics studies also indicated remodeling of redox metabolism to compensate for a shortage of redox equivalents. In conclusion, this work closes an important knowledge gap concerning the mycofactocin system and adds a new pathway to the intricate web of redox reactions governing the metabolism of mycobacteria.
-
- Biochemistry and Chemical Biology
- Genetics and Genomics
Yerba mate (YM, Ilex paraguariensis) is an economically important crop marketed for the elaboration of mate, the third-most widely consumed caffeine-containing infusion worldwide. Here, we report the first genome assembly of this species, which has a total length of 1.06 Gb and contains 53,390 protein-coding genes. Comparative analyses revealed that the large YM genome size is partly due to a whole-genome duplication (Ip-α) during the early evolutionary history of Ilex, in addition to the hexaploidization event (γ) shared by core eudicots. Characterization of the genome allowed us to clone the genes encoding methyltransferase enzymes that catalyse multiple reactions required for caffeine production. To our surprise, this species has converged upon a different biochemical pathway compared to that of coffee and tea. In order to gain insight into the structural basis for the convergent enzyme activities, we obtained a crystal structure for the terminal enzyme in the pathway that forms caffeine. The structure reveals that convergent solutions have evolved for substrate positioning because different amino acid residues facilitate a different substrate orientation such that efficient methylation occurs in the independently evolved enzymes in YM and coffee. While our results show phylogenomic constraint limits the genes coopted for convergence of caffeine biosynthesis, the X-ray diffraction data suggest structural constraints are minimal for the convergent evolution of individual reactions.