SIMMER employs similarity algorithms to accurately identify human gut microbiome species and enzymes capable of known chemical transformations

  1. Annamarie E Bustion
  2. Renuka R Nayak
  3. Ayushi Agrawal
  4. Peter J Turnbaugh
  5. Katie S Pollard  Is a corresponding author
  1. University of California, San Francisco, United States
  2. Gladstone Institutes, United States

Abstract

Bacteria within the gut microbiota possess the ability to metabolize a wide array of human drugs, foods, and toxins, but the responsible enzymes for these chemical events remain largely uncharacterized due to the time-consuming nature of current experimental approaches. Attempts have been made in the past to computationally predict which bacterial species and enzymes are responsible for chemical transformations in the gut environment, but with low accuracy due to minimal chemical representation and sequence similarity search schemes. Here, we present an in silico approach that employs chemical and protein Similarity algorithms that Identify MicrobioMe Enzymatic Reactions (SIMMER). We show that SIMMER accurately predicts the responsible species and enzymes for a queried reaction, unlike previous methods. We demonstrate SIMMER use cases in the context of drug metabolism by predicting previously uncharacterized enzymes for 88 drug transformations known to occur in the human gut. We validate these predictions on external datasets and provide an in vitro validation of SIMMER's predictions for metabolism of methotrexate, an anti-arthritic drug. After demonstrating its utility and accuracy, we made SIMMER available as both a command-line and web tool, with flexible input and output options for determining chemical transformations within the human gut. We present SIMMER as a computational addition to the microbiome researcher's toolbox, enabling them to make informed hypotheses before embarking on the lengthy laboratory experiments required to characterize novel bacterial enzymes that can alter human ingested compounds.

Data availability

Data generated and analyzed during this study are provided in Figures 2-10 source data files, Table 1 source data file, supplemental files, and at https://github.com/aebustion/SIMMER. Accession numbers of previously published datasets are provided in the Materials and Methods section. SIMMER code can either be run at the SIMMER website (https://simmer.pollard.gladstone.org/) or downloaded directly from the above-linked GitHub.

The following previously published data sets were used

Article and author information

Author details

  1. Annamarie E Bustion

    Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7380-3619
  2. Renuka R Nayak

    Department of Medicine, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  3. Ayushi Agrawal

    Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2940-8926
  4. Peter J Turnbaugh

    Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, United States
    Competing interests
    Peter J Turnbaugh, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0888-2875
  5. Katie S Pollard

    Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, United States
    For correspondence
    kpollard@gladstone.ucsf.edu
    Competing interests
    Katie S Pollard, is a consultant for Phylagen Inc..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9870-6196

Funding

PhRMA Foundation (Predoctoral Fellowship)

  • Annamarie E Bustion

ARCS Foundation (Graduate Student Scholarship)

  • Annamarie E Bustion

UCSF Benioff Center for Microbiome Medicine (Trainee Pilot Award)

  • Annamarie E Bustion

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Matthew Redinbo, The University of North Carolina - Chapel Hill, United States

Version history

  1. Received: August 3, 2022
  2. Preprint posted: August 4, 2022 (view preprint)
  3. Accepted: June 11, 2023
  4. Accepted Manuscript published: June 12, 2023 (version 1)
  5. Accepted Manuscript updated: June 14, 2023 (version 2)
  6. Version of Record published: June 23, 2023 (version 3)

Copyright

© 2023, Bustion et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,516
    views
  • 139
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Annamarie E Bustion
  2. Renuka R Nayak
  3. Ayushi Agrawal
  4. Peter J Turnbaugh
  5. Katie S Pollard
(2023)
SIMMER employs similarity algorithms to accurately identify human gut microbiome species and enzymes capable of known chemical transformations
eLife 12:e82401.
https://doi.org/10.7554/eLife.82401

Share this article

https://doi.org/10.7554/eLife.82401

Further reading

    1. Biochemistry and Chemical Biology
    Valentina Kugler, Selina Schwaighofer ... Eduard Stefan
    Research Article

    Protein kinases act as central molecular switches in the control of cellular functions. Alterations in the regulation and function of protein kinases may provoke diseases including cancer. In this study we investigate the conformational states of such disease-associated kinases using the high sensitivity of the kinase conformation (KinCon) reporter system. We first track BRAF kinase activity conformational changes upon melanoma drug binding. Second, we also use the KinCon reporter technology to examine the impact of regulatory protein interactions on LKB1 kinase tumor suppressor functions. Third, we explore the conformational dynamics of RIP kinases in response to TNF pathway activation and small molecule interactions. Finally, we show that CDK4/6 interactions with regulatory proteins alter conformations which remain unaffected in the presence of clinically applied inhibitors. Apart from its predictive value, the KinCon technology helps to identify cellular factors that impact drug efficacies. The understanding of the structural dynamics of full-length protein kinases when interacting with small molecule inhibitors or regulatory proteins is crucial for designing more effective therapeutic strategies.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Sandeep K Ravala, Sendi Rafael Adame-Garcia ... John JG Tesmer
    Research Article

    PIP3-dependent Rac exchanger 1 (P-Rex1) is abundantly expressed in neutrophils and plays central roles in chemotaxis and cancer metastasis by serving as a guanine-nucleotide exchange factor (GEF) for Rac. The enzyme is synergistically activated by PIP3 and heterotrimeric Gβγ subunits, but mechanistic details remain poorly understood. While investigating the regulation of P-Rex1 by PIP3, we discovered that Ins(1,3,4,5)P4 (IP4) inhibits P-Rex1 activity and induces large decreases in backbone dynamics in diverse regions of the protein. Cryo-electron microscopy analysis of the P-Rex1·IP4 complex revealed a conformation wherein the pleckstrin homology (PH) domain occludes the active site of the Dbl homology (DH) domain. This configuration is stabilized by interactions between the first DEP domain (DEP1) and the DH domain and between the PH domain and a 4-helix bundle (4HB) subdomain that extends from the C-terminal domain of P-Rex1. Disruption of the DH–DEP1 interface in a DH/PH-DEP1 fragment enhanced activity and led to a more extended conformation in solution, whereas mutations that constrain the occluded conformation led to decreased GEF activity. Variants of full-length P-Rex1 in which the DH–DEP1 and PH–4HB interfaces were disturbed exhibited enhanced activity during chemokine-induced cell migration, confirming that the observed structure represents the autoinhibited state in living cells. Interactions with PIP3-containing liposomes led to disruption of these interfaces and increased dynamics protein-wide. Our results further suggest that inositol phosphates such as IP4 help to inhibit basal P-Rex1 activity in neutrophils, similar to their inhibitory effects on phosphatidylinositol-3-kinase.