Abstract

The activation of Src kinase in cells is strictly controlled by intramolecular inhibitory interactions mediated by SH3 and SH2 domains. They impose structural constraints on the kinase domain holding it in a catalytically non‑permissive state. The transition between inactive and active conformation is known to be largely regulated by the phosphorylation state of key tyrosines 416 and 527. Here we identified that phosphorylation of tyrosine 90 reduces binding affinity of the SH3 domain to its interacting partners, opens the Src structure, and renders Src catalytically active. This is accompanied by an increased affinity to the plasma membrane, decreased membrane motility and slower diffusion from focal adhesions. Phosphorylation of tyrosine 90 controlling SH3‑medited intramolecular inhibitory interaction, analogical to tyrosine 527 regulating SH2‑C‑terminus bond, enables SH3 and SH2 domains to serve as cooperative but independent regulatory elements. This mechanism allows Src to adopt several distinct conformations of varying catalytic activities and interacting properties, enabling it to operate not as a simple switch but as a tunable regulator functioning as a signaling hub in a variety of cellular processes.

Data availability

All data generated or analysed during this study are included in the manuscript and supplementary figures. Source Data files have been provided for Figures 1-7.

Article and author information

Author details

  1. Lenka Koudelková

    Department of Cell Biology, Charles University, Vestec, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  2. Markéta Pelantová

    Department of Cell Biology, Charles University, Vestec, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  3. Zuzana Brůhová

    Department of Cell Biology, Charles University, Vestec, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  4. Martin Sztacho

    Department of Cell Biology, Charles University, Vestec, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  5. Vojtěch Pavlík

    Department of Cell Biology, Charles University, Vestec, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  6. Dalibor Pánek

    Imaging Methods Core Facility, Charles University, Vestec, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  7. Jakub Gemperle

    Department of Cell Biology, Charles University, Vestec, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  8. Pavel Talacko

    Proteomics Core Facility, Charles University, Vestec, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  9. Jan Brábek

    Department of Cell Biology, Charles University, Vestec, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  10. Daniel Rösel

    Department of Cell Biology, Charles University, Vestec, Czech Republic
    For correspondence
    rosel@natur.cuni.cz
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7221-8672

Funding

Grantová Agentura České Republiky (19-03932S)

  • Lenka Koudelková
  • Jan Brábek
  • Daniel Rösel

Ministerstvo Školství, Mládeže a Tělovýchovy (LX22NPO5102)

  • Lenka Koudelková
  • Markéta Pelantová
  • Jan Brábek
  • Daniel Rösel

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Koudelková et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 969
    views
  • 159
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lenka Koudelková
  2. Markéta Pelantová
  3. Zuzana Brůhová
  4. Martin Sztacho
  5. Vojtěch Pavlík
  6. Dalibor Pánek
  7. Jakub Gemperle
  8. Pavel Talacko
  9. Jan Brábek
  10. Daniel Rösel
(2023)
Phosphorylation of tyrosine 90 in SH3 domain is a new regulatory switch controlling Src kinase
eLife 12:e82428.
https://doi.org/10.7554/eLife.82428

Share this article

https://doi.org/10.7554/eLife.82428

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Amanda Mixon Blackwell, Yasaman Jami-Alahmadi ... Paul A Sigala
    Research Article

    Malaria parasites have evolved unusual metabolic adaptations that specialize them for growth within heme-rich human erythrocytes. During blood-stage infection, Plasmodium falciparum parasites internalize and digest abundant host hemoglobin within the digestive vacuole. This massive catabolic process generates copious free heme, most of which is biomineralized into inert hemozoin. Parasites also express a divergent heme oxygenase (HO)-like protein (PfHO) that lacks key active-site residues and has lost canonical HO activity. The cellular role of this unusual protein that underpins its retention by parasites has been unknown. To unravel PfHO function, we first determined a 2.8 Å-resolution X-ray structure that revealed a highly α-helical fold indicative of distant HO homology. Localization studies unveiled PfHO targeting to the apicoplast organelle, where it is imported and undergoes N-terminal processing but retains most of the electropositive transit peptide. We observed that conditional knockdown of PfHO was lethal to parasites, which died from defective apicoplast biogenesis and impaired isoprenoid-precursor synthesis. Complementation and molecular-interaction studies revealed an essential role for the electropositive N-terminus of PfHO, which selectively associates with the apicoplast genome and enzymes involved in nucleic acid metabolism and gene expression. PfHO knockdown resulted in a specific deficiency in levels of apicoplast-encoded RNA but not DNA. These studies reveal an essential function for PfHO in apicoplast maintenance and suggest that Plasmodium repurposed the conserved HO scaffold from its canonical heme-degrading function in the ancestral chloroplast to fulfill a critical adaptive role in organelle gene expression.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Senem Ntourmas, Martin Sachs ... Dominic B Bernkopf
    Research Article

    Activation of the Wnt/β-catenin pathway crucially depends on the polymerization of dishevelled 2 (DVL2) into biomolecular condensates. However, given the low affinity of known DVL2 self-interaction sites and its low cellular concentration, it is unclear how polymers can form. Here, we detect oligomeric DVL2 complexes at endogenous protein levels in human cell lines, using a biochemical ultracentrifugation assay. We identify a low-complexity region (LCR4) in the C-terminus whose deletion and fusion decreased and increased the complexes, respectively. Notably, LCR4-induced complexes correlated with the formation of microscopically visible multimeric condensates. Adjacent to LCR4, we mapped a conserved domain (CD2) promoting condensates only. Molecularly, LCR4 and CD2 mediated DVL2 self-interaction via aggregating residues and phenylalanine stickers, respectively. Point mutations inactivating these interaction sites impaired Wnt pathway activation by DVL2. Our study discovers DVL2 complexes with functional importance for Wnt/β-catenin signaling. Moreover, we provide evidence that DVL2 condensates form in two steps by pre-oligomerization via high-affinity interaction sites, such as LCR4, and subsequent condensation via low-affinity interaction sites, such as CD2.