Improved ANAP incorporation and VCF analysis reveals details of P2X7 current facilitation and a limited conformational interplay between ATP binding and the intracellular ballast domain

  1. Anna Durner
  2. Ellis Durner
  3. Annette Nicke  Is a corresponding author
  1. LMU Munich, Germany

Abstract

The large intracellular C-terminus of the pro-inflammatory P2X7 ion channel receptor (P2X7R) is associated with diverse P2X7R-specific functions. Cryo-EM structures of the closed and ATP-bound open full-length P2X7R recently identified a membrane-associated anchoring domain, an open-state stabilizing 'cap' domain, and a globular 'ballast domain' containing GTP/GDP and dinuclear Zn2+-binding sites with unknown functions. To investigate protein dynamics during channel activation, we improved incorporation of the environment-sensitive fluorescent unnatural amino acid L-3-(6-acetylnaphthalen-2-ylamino)-2-aminopropanoic acid (ANAP) into Xenopus laevis oocyte-expressed P2X7Rs and performed voltage clamp fluorometry (VCF). While we confirmed predicted conformational changes within the extracellular and the transmembrane domains, only three out of 41 mutants containing ANAP in the C-terminal domain resulted in ATP-induced fluorescence changes. We conclude that the ballast domain functions rather independently from the extracellular ATP binding domain and might require activation by additional ligands and/or protein interactions. Novel tools to study these are presented.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Original recordings or scans from SDS-PAGE gels are provided as source data and deposited with Dryad:This paper does not report original code.

The following data sets were generated
    1. Nicke A
    2. Durner A
    3. Durner E
    (2023) Table 1-source data 1
    Dryad Digital Repository, doi:10.5061/dryad.p8cz8w9tb.

Article and author information

Author details

  1. Anna Durner

    Department of Molecular Biology of Neuronal Signals, LMU Munich, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Ellis Durner

    Center for Nanoscience, LMU Munich, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Annette Nicke

    Department of Molecular Biology of Neuronal Signals, LMU Munich, Munich, Germany
    For correspondence
    annette.nicke@lrz.uni-muenchen.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6798-505X

Funding

Deutsche Forschungsgemeinschaft (335447717 - SFB 1328,A15)

  • Annette Nicke

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Stephan A Pless, University of Copenhagen, Denmark

Version history

  1. Received: August 5, 2022
  2. Preprint posted: September 1, 2022 (view preprint)
  3. Accepted: January 3, 2023
  4. Accepted Manuscript published: January 4, 2023 (version 1)
  5. Version of Record published: January 20, 2023 (version 2)

Copyright

© 2023, Durner et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 675
    Page views
  • 105
    Downloads
  • 2
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anna Durner
  2. Ellis Durner
  3. Annette Nicke
(2023)
Improved ANAP incorporation and VCF analysis reveals details of P2X7 current facilitation and a limited conformational interplay between ATP binding and the intracellular ballast domain
eLife 12:e82479.
https://doi.org/10.7554/eLife.82479

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Maria Körner, Susanne R Meyer ... Alexander Buchberger
    Research Article Updated

    The ATPase p97 (also known as VCP, Cdc48) has crucial functions in a variety of important cellular processes such as protein quality control, organellar homeostasis, and DNA damage repair, and its de-regulation is linked to neuromuscular diseases and cancer. p97 is tightly controlled by numerous regulatory cofactors, but the full range and function of the p97–cofactor network is unknown. Here, we identify the hitherto uncharacterized FAM104 proteins as a conserved family of p97 interactors. The two human family members VCP nuclear cofactor family member 1 and 2 (VCF1/2) bind p97 directly via a novel, alpha-helical motif and associate with p97-UFD1-NPL4 and p97-UBXN2B complexes in cells. VCF1/2 localize to the nucleus and promote the nuclear import of p97. Loss of VCF1/2 results in reduced nuclear p97 levels, slow growth, and hypersensitivity to chemical inhibition of p97 in the absence and presence of DNA damage, suggesting that FAM104 proteins are critical regulators of nuclear p97 functions.

    1. Biochemistry and Chemical Biology
    2. Epidemiology and Global Health
    Takashi Sasaki, Yoshinori Nishimoto ... Yasumichi Arai
    Research Article

    Background: High levels of circulating adiponectin are associated with increased insulin sensitivity, low prevalence of diabetes, and low body mass index (BMI); however, high levels of circulating adiponectin are also associated with increased mortality in the 60-70 age group. In this study, we aimed to clarify factors associated with circulating high-molecular-weight (cHMW) adiponectin levels and their association with mortality in the very old (85-89 years old) and centenarians.

    Methods: The study included 812 (women: 84.4%) for centenarians and 1,498 (women: 51.7%) for the very old. The genomic DNA sequence data were obtained by whole genome sequencing or DNA microarray-imputation methods. LASSO and multivariate regression analyses were used to evaluate cHMW adiponectin characteristics and associated factors. All-cause mortality was analyzed in three quantile groups of cHMW adiponectin levels using Cox regression.

    Results: The cHMW adiponectin levels were increased significantly beyond 100 years of age, were negatively associated with diabetes prevalence, and were associated with SNVs in CDH13 (p = 2.21 × 10-22) and ADIPOQ (p = 5.72 × 10-7). Multivariate regression analysis revealed that genetic variants, BMI, and high-density lipoprotein cholesterol (HDLC) were the main factors associated with cHMW adiponectin levels in the very old, whereas the BMI showed no association in centenarians. The hazard ratios for all-cause mortality in the intermediate and high cHMW adiponectin groups in very old men were significantly higher rather than those for all-cause mortality in the low level cHMW adiponectin group, even after adjustment with BMI. In contrast, the hazard ratios for all-cause mortality were significantly higher for high cHMW adiponectin groups in very old women, but were not significant after adjustment with BMI.

    Conclusions: cHMW adiponectin levels increased with age until centenarians, and the contribution of known major factors associated with cHMW adiponectin levels, including BMI and HDLC, varies with age, suggesting that its physiological significance also varies with age in the oldest old.

    Funding: This study was supported by grants from the Ministry of Health, Welfare, and Labour for the Scientific Research Projects for Longevity; a Grant-in-Aid for Scientific Research (No 21590775, 24590898, 15KT0009, 18H03055, 20K20409, 20K07792, 23H03337) from the Japan Society for the Promotion of Science; Keio University Global Research Institute (KGRI), Kanagawa Institute of Industrial Science and Technology (KISTEC), Japan Science and Technology Agency (JST) Research Complex Program 'Tonomachi Research Complex' Wellbeing Research Campus: Creating new values through technological and social innovation (JP15667051), the Program for an Integrated Database of Clinical and Genomic Information from the Japan Agency for Medical Research and Development (No. 16kk0205009h001, 17jm0210051h0001, 19dk0207045h0001); the medical-welfare-food-agriculture collaborative consortium project from the Japan Ministry of Agriculture, Forestry, and Fisheries; and the Biobank Japan Program from the Ministry of Education, Culture, Sports, and Technology.