Quantifying how post-transcriptional noise and gene copy number variation bias transcriptional parameter inference from mRNA distributions

  1. Xiaoming Fu
  2. Heta P Patel
  3. Stefano Coppola
  4. Libin Xu
  5. Zhixing Cao  Is a corresponding author
  6. Tineke L Lenstra  Is a corresponding author
  7. Ramon Grima  Is a corresponding author
  1. East China University of Science and Technology, China
  2. Oncode Institute, Netherlands
  3. University of Edinburgh, United Kingdom

Abstract

Transcriptional rates are often estimated by fitting the distribution of mature mRNA numbers measured using smFISH (single molecule fluorescence in situ hybridization) with the distribution predicted by the telegraph model of gene expression, which defines two promoter states of activity and inactivity. However, fluctuations in mature mRNA numbers are strongly affected by processes downstream of transcription. In addition, the telegraph model assumes one gene copy, but in experiments cells may have two gene copies as cells replicate their genome during the cell cycle. Whilst it is often presumed that post-transcriptional noise and gene copy number variation affect transcriptional parameter estimation, the size of the error introduced remains unclear. To address this issue, here we measure both mature and nascent mRNA distributions of GAL10 in yeast cells using smFISH and classify each cell according to its cell cycle phase. We infer transcriptional parameters from mature and nascent mRNA distributions, with and without accounting for cell cycle phase and compare the results to live-cell transcription measurements of the same gene. We find that: (i) correcting for cell cycle dynamics decreases the promoter switching rates and the initiation rate, and increases the fraction of time spent in the active state, as well as the burst size; (ii) additional correction for post-transcriptional noise leads to further increases in the burst size and to a large reduction in the errors in parameter estimation. Furthermore, we outline how to correctly adjust for measurement noise in smFISH due to uncertainty in transcription site localisation when introns cannot be labelled. Simulations with parameters estimated from nascent smFISH data, which is corrected for cell cycle phases and measurement noise, leads to autocorrelation functions that agree with those obtained from live-cell imaging.

Data availability

The 4 smFISH datasets are available from https://osf.io/d5nvj/. These datasets include the maximum intensity projected images, the spot localization results, the nuclear and cellular masks used for merged, G1 and G2 cells and the analyzed results of the mature and nascent data. The analysis code of the smFISH microscopy data is available at https://github.com/Lenstralab/smFISH. The code for the the synthetic simulations and the parameter inference is available at https://github.com/palmtree2013/RNAInferenceTool.jl.

The following data sets were generated

Article and author information

Author details

  1. Xiaoming Fu

    Key Laboratory of Smart Manufacturing in Energy Chemical Process, East China University of Science and Technology, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4073-9822
  2. Heta P Patel

    Division of Gene Regulation, Oncode Institute, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1618-951X
  3. Stefano Coppola

    Division of Gene Regulation, Oncode Institute, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Libin Xu

    Key Laboratory of Smart Manufacturing in Energy Chemical Process, East China University of Science and Technology, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Zhixing Cao

    Key Laboratory of Smart Manufacturing in Energy Chemical Process, East China University of Science and Technology, Nanjing, China
    For correspondence
    zcao@ecust.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2600-5806
  6. Tineke L Lenstra

    Division of Gene Regulation, Oncode Institute, Amsterdam, Netherlands
    For correspondence
    t.lenstra@nki.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4440-9962
  7. Ramon Grima

    School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
    For correspondence
    ramon.grima@ed.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1266-8169

Funding

National Natural Science Foundation of China (61988101)

  • Xiaoming Fu
  • Libin Xu
  • Zhixing Cao

National Natural Science Foundation of China (6207313)

  • Xiaoming Fu
  • Libin Xu
  • Zhixing Cao

H2020 European Research Council (755695 BURSTREG)

  • Tineke L Lenstra

Leverhulme Trust (RPG-2020-327)

  • Ramon Grima

Shanghai Action Plan for Technological Innovation Grant (22ZR1415300)

  • Xiaoming Fu
  • Libin Xu
  • Zhixing Cao

Shanghai Action Plan for Technological Innovation Grant (22511104000)

  • Xiaoming Fu
  • Libin Xu
  • Zhixing Cao

Shanghai Sailing Program (22YF1410700)

  • Xiaoming Fu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Fu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,188
    views
  • 199
    downloads
  • 38
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xiaoming Fu
  2. Heta P Patel
  3. Stefano Coppola
  4. Libin Xu
  5. Zhixing Cao
  6. Tineke L Lenstra
  7. Ramon Grima
(2022)
Quantifying how post-transcriptional noise and gene copy number variation bias transcriptional parameter inference from mRNA distributions
eLife 11:e82493.
https://doi.org/10.7554/eLife.82493

Share this article

https://doi.org/10.7554/eLife.82493

Further reading

    1. Computational and Systems Biology
    Jun Ren, Ying Zhou ... Qiyuan Li
    Research Article

    Manifold-learning is particularly useful to resolve the complex cellular state space from single-cell RNA sequences. While current manifold-learning methods provide insights into cell fate by inferring graph-based trajectory at cell level, challenges remain to retrieve interpretable biology underlying the diverse cellular states. Here, we described MGPfactXMBD, a model-based manifold-learning framework and capable to factorize complex development trajectories into independent bifurcation processes of gene sets, and thus enables trajectory inference based on relevant features. MGPfactXMBD offers a more nuanced understanding of the biological processes underlying cellular trajectories with potential determinants. When bench-tested across 239 datasets, MGPfactXMBD showed advantages in major quantity-control metrics, such as branch division accuracy and trajectory topology, outperforming most established methods. In real datasets, MGPfactXMBD recovered the critical pathways and cell types in microglia development with experimentally valid regulons and markers. Furthermore, MGPfactXMBD discovered evolutionary trajectories of tumor-associated CD8+ T cells and yielded new subtypes of CD8+ T cells with gene expression signatures significantly predictive of the responses to immune checkpoint inhibitor in independent cohorts. In summary, MGPfactXMBD offers a manifold-learning framework in scRNA-seq data which enables feature selection for specific biological processes and contributing to advance our understanding of biological determination of cell fate.

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Daniel Hui, Scott Dudek ... Marylyn D Ritchie
    Research Article

    Apart from ancestry, personal or environmental covariates may contribute to differences in polygenic score (PGS) performance. We analyzed the effects of covariate stratification and interaction on body mass index (BMI) PGS (PGSBMI) across four cohorts of European (N = 491,111) and African (N = 21,612) ancestry. Stratifying on binary covariates and quintiles for continuous covariates, 18/62 covariates had significant and replicable R2 differences among strata. Covariates with the largest differences included age, sex, blood lipids, physical activity, and alcohol consumption, with R2 being nearly double between best- and worst-performing quintiles for certain covariates. Twenty-eight covariates had significant PGSBMI–covariate interaction effects, modifying PGSBMI effects by nearly 20% per standard deviation change. We observed overlap between covariates that had significant R2 differences among strata and interaction effects – across all covariates, their main effects on BMI were correlated with their maximum R2 differences and interaction effects (0.56 and 0.58, respectively), suggesting high-PGSBMI individuals have highest R2 and increase in PGS effect. Using quantile regression, we show the effect of PGSBMI increases as BMI itself increases, and that these differences in effects are directly related to differences in R2 when stratifying by different covariates. Given significant and replicable evidence for context-specific PGSBMI performance and effects, we investigated ways to increase model performance taking into account nonlinear effects. Machine learning models (neural networks) increased relative model R2 (mean 23%) across datasets. Finally, creating PGSBMI directly from GxAge genome-wide association studies effects increased relative R2 by 7.8%. These results demonstrate that certain covariates, especially those most associated with BMI, significantly affect both PGSBMI performance and effects across diverse cohorts and ancestries, and we provide avenues to improve model performance that consider these effects.