Abstract

Pavlovian fear conditioning has been extensively used to study the behavioral and neural basis of defensive systems. In a typical procedure, a cue is paired with foot shock, and subsequent cue presentation elicits freezing, a behavior theoretically linked to predator detection. Studies have since shown a fear conditioned cue can elicit locomotion, a behavior that - in addition to jumping, and rearing - is theoretically linked to imminent or occurring predation. A criticism of studies observing fear conditioned cue-elicited locomotion is that responding is non-associative. We gave rats Pavlovian fear discrimination over a baseline of reward seeking. TTL-triggered cameras captured 5 behavior frames/s around cue presentation. Experiment 1 examined the emergence of danger-specific behaviors over fear acquisition. Experiment 2 examined the expression of danger-specific behaviors in fear extinction. In total, we scored 112,000 frames for nine discrete behavior categories. Temporal ethograms show that during acquisition, a fear conditioned cue suppresses reward seeking and elicits freezing, but also elicits locomotion, jumping, and rearing - all of which are maximal when foot shock is imminent. During extinction, a fear conditioned cue most prominently suppresses reward seeking, and elicits locomotion that is timed to shock delivery. The independent expression of these behaviors in both experiments reveal a fear conditioned cue to orchestrate a temporally organized suite of behaviors.

Data availability

Raw images and observer judgments are freely available: https://doi.org/10.7910/DVN/HKMUUN

The following data sets were generated

Article and author information

Author details

  1. Amanda Chu

    Department of Psychology and Neuroscience, Boston College, Chestnut Hill, United States
    For correspondence
    amanda.chu@bc.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Nicholas T Gordon

    Department of Psychology and Neuroscience, Boston College, Chestnut Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Aleah M DuBois

    Department of Psychology and Neuroscience, Boston College, Chestnut Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Christa B Michel

    Department of Psychology and Neuroscience, Boston College, Chestnut Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Katherine E Hanrahan

    Department of Psychology and Neuroscience, Boston College, Chestnut Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. David C Williams

    Department of Psychology and Neuroscience, Boston College, Chestnut Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Stefano Anzellotti

    Department of Psychology and Neuroscience, Boston College, Chestnut Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Michael A McDannald

    Department of Psychology and Neuroscience, Boston College, Chestnut Hill, United States
    For correspondence
    michael.mcdannald@bc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8525-1260

Funding

National Institutes of Health (MH117791)

  • Michael A McDannald

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All protocols were approved by the Boston College Animal Care and Use Committee and all experiments were carried out in accordance with the NIH guidelines regarding the care and use of rats for experimental procedures. The Boston College experimental protocol supporting these procedures is 2024-001.

Copyright

© 2024, Chu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,258
    views
  • 163
    downloads
  • 15
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Amanda Chu
  2. Nicholas T Gordon
  3. Aleah M DuBois
  4. Christa B Michel
  5. Katherine E Hanrahan
  6. David C Williams
  7. Stefano Anzellotti
  8. Michael A McDannald
(2024)
A fear conditioned cue orchestrates a suite of behaviors in rats
eLife 13:e82497.
https://doi.org/10.7554/eLife.82497

Share this article

https://doi.org/10.7554/eLife.82497

Further reading

    1. Neuroscience
    Lucie Oriol, Melody Chao ... Thomas S Hnasko
    Research Article

    The ventral tegmental area (VTA) contains projection neurons that release the neurotransmitters dopamine, GABA, and/or glutamate from distal synapses. VTA also contains GABA neurons that synapse locally on to dopamine neurons, synapses widely credited to a population of so-called VTA interneurons. Interneurons in cortex, striatum, and elsewhere have well-defined morphological features, physiological properties, and molecular markers, but such features have not been clearly described in VTA. Indeed, there is scant evidence that local and distal synapses originate from separate populations of VTA GABA neurons. In this study, we tested whether several markers expressed in non-dopamine VTA neurons are selective markers of interneurons, defined as neurons that synapse locally but not distally. Challenging previous assumptions, we found that VTA neurons genetically defined by expression of parvalbumin, somatostatin, neurotensin, or Mu-opioid receptor project to known VTA targets including nucleus accumbens, ventral pallidum, lateral habenula, and prefrontal cortex. Moreover, we provide evidence that VTA GABA and glutamate projection neurons make functional inhibitory or excitatory synapses locally within VTA. These findings suggest that local collaterals of VTA projection neurons could mediate functions prior attributed to VTA interneurons. This study underscores the need for a refined understanding of VTA connectivity to explain how heterogeneous VTA circuits mediate diverse functions related to reward, motivation, or addiction.

    1. Neuroscience
    Lisa M Bas, Ian D Roberts ... Anita Tusche
    Research Article

    People selectively help others based on perceptions of their merit or need. Here, we develop a neurocomputational account of how these social perceptions translate into social choice. Using a novel fMRI social perception task, we show that both merit and need perceptions recruited the brain’s social inference network. A behavioral computational model identified two non-exclusive mechanisms underlying variance in social perceptions: a consistent tendency to perceive others as meritorious/needy (bias) and a propensity to sample and integrate normative evidence distinguishing high from low merit/need in other people (sensitivity). Variance in people’s merit (but not need) bias and sensitivity independently predicted distinct aspects of altruism in a social choice task completed months later. An individual’s merit bias predicted context-independent variance in people’s overall other-regard during altruistic choice, biasing people toward prosocial actions. An individual’s merit sensitivity predicted context-sensitive discrimination in generosity toward high and low merit recipients by influencing other- and self-regard during altruistic decision-making. This context-sensitive perception–action link was associated with activation in the right temporoparietal junction. Together, these findings point toward stable, biologically based individual differences in perceptual processes related to abstract social concepts like merit, and suggest that these differences may have important behavioral implications for an individual’s tendency toward favoritism or discrimination in social settings.