Abstract

Pavlovian fear conditioning has been extensively used to study the behavioral and neural basis of defensive systems. In a typical procedure, a cue is paired with foot shock, and subsequent cue presentation elicits freezing, a behavior theoretically linked to predator detection. Studies have since shown a fear conditioned cue can elicit locomotion, a behavior that - in addition to jumping, and rearing - is theoretically linked to imminent or occurring predation. A criticism of studies observing fear conditioned cue-elicited locomotion is that responding is non-associative. We gave rats Pavlovian fear discrimination over a baseline of reward seeking. TTL-triggered cameras captured 5 behavior frames/s around cue presentation. Experiment 1 examined the emergence of danger-specific behaviors over fear acquisition. Experiment 2 examined the expression of danger-specific behaviors in fear extinction. In total, we scored 112,000 frames for nine discrete behavior categories. Temporal ethograms show that during acquisition, a fear conditioned cue suppresses reward seeking and elicits freezing, but also elicits locomotion, jumping, and rearing - all of which are maximal when foot shock is imminent. During extinction, a fear conditioned cue most prominently suppresses reward seeking, and elicits locomotion that is timed to shock delivery. The independent expression of these behaviors in both experiments reveal a fear conditioned cue to orchestrate a temporally organized suite of behaviors.

Data availability

Raw images and observer judgments are freely available: https://doi.org/10.7910/DVN/HKMUUN

The following data sets were generated

Article and author information

Author details

  1. Amanda Chu

    Department of Psychology and Neuroscience, Boston College, Chestnut Hill, United States
    For correspondence
    amanda.chu@bc.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Nicholas T Gordon

    Department of Psychology and Neuroscience, Boston College, Chestnut Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Aleah M DuBois

    Department of Psychology and Neuroscience, Boston College, Chestnut Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Christa B Michel

    Department of Psychology and Neuroscience, Boston College, Chestnut Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Katherine E Hanrahan

    Department of Psychology and Neuroscience, Boston College, Chestnut Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. David C Williams

    Department of Psychology and Neuroscience, Boston College, Chestnut Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Stefano Anzellotti

    Department of Psychology and Neuroscience, Boston College, Chestnut Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Michael A McDannald

    Department of Psychology and Neuroscience, Boston College, Chestnut Hill, United States
    For correspondence
    michael.mcdannald@bc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8525-1260

Funding

National Institutes of Health (MH117791)

  • Michael A McDannald

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All protocols were approved by the Boston College Animal Care and Use Committee and all experiments were carried out in accordance with the NIH guidelines regarding the care and use of rats for experimental procedures. The Boston College experimental protocol supporting these procedures is 2024-001.

Copyright

© 2024, Chu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,024
    views
  • 139
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Amanda Chu
  2. Nicholas T Gordon
  3. Aleah M DuBois
  4. Christa B Michel
  5. Katherine E Hanrahan
  6. David C Williams
  7. Stefano Anzellotti
  8. Michael A McDannald
(2024)
A fear conditioned cue orchestrates a suite of behaviors in rats
eLife 13:e82497.
https://doi.org/10.7554/eLife.82497

Share this article

https://doi.org/10.7554/eLife.82497

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Cesare V Parise, Marc O Ernst
    Research Article

    Audiovisual information reaches the brain via both sustained and transient input channels, representing signals’ intensity over time or changes thereof, respectively. To date, it is unclear to what extent transient and sustained input channels contribute to the combined percept obtained through multisensory integration. Based on the results of two novel psychophysical experiments, here we demonstrate the importance of the transient (instead of the sustained) channel for the integration of audiovisual signals. To account for the present results, we developed a biologically inspired, general-purpose model for multisensory integration, the multisensory correlation detectors, which combines correlated input from unimodal transient channels. Besides accounting for the results of our psychophysical experiments, this model could quantitatively replicate several recent findings in multisensory research, as tested against a large collection of published datasets. In particular, the model could simultaneously account for the perceived timing of audiovisual events, multisensory facilitation in detection tasks, causality judgments, and optimal integration. This study demonstrates that several phenomena in multisensory research that were previously considered unrelated, all stem from the integration of correlated input from unimodal transient channels.

    1. Neuroscience
    Tirso RJ Gonzalez Alam, Katya Krieger-Redwood ... Elizabeth Jefferies
    Research Article

    Processing pathways between sensory and default mode network (DMN) regions support recognition, navigation, and memory but their organisation is not well understood. We show that functional subdivisions of visual cortex and DMN sit at opposing ends of parallel streams of information processing that support visually mediated semantic and spatial cognition, providing convergent evidence from univariate and multivariate task responses, intrinsic functional and structural connectivity. Participants learned virtual environments consisting of buildings populated with objects, drawn from either a single semantic category or multiple categories. Later, they made semantic and spatial context decisions about these objects and buildings during functional magnetic resonance imaging. A lateral ventral occipital to fronto-temporal DMN pathway was primarily engaged by semantic judgements, while a medial visual to medial temporal DMN pathway supported spatial context judgements. These pathways had distinctive locations in functional connectivity space: the semantic pathway was both further from unimodal systems and more balanced between visual and auditory-motor regions compared with the spatial pathway. When semantic and spatial context information could be integrated (in buildings containing objects from a single category), regions at the intersection of these pathways responded, suggesting that parallel processing streams interact at multiple levels of the cortical hierarchy to produce coherent memory-guided cognition.