Exploring therapeutic strategies for infantile neuronal axonal dystrophy (INAD/PARK14)

  1. Guang Lin
  2. Burak Tepe
  3. Geoff McGrane
  4. Regine C Tipon
  5. Gist Croft
  6. Leena Panwala
  7. Amanda Hope
  8. Agnes JH Liang
  9. Zhongyuan Zuo
  10. Seul Kee Byeon
  11. Lily Wang
  12. Akhilesh Pandey
  13. Hugo J Bellen  Is a corresponding author
  1. Baylor College of Medicine, United States
  2. New York Stem Cell Foundation, United States
  3. INADcure Foundation, United States
  4. Mayo Clinic, United States

Abstract

Infantile Neuroaxonal Dystrophy (INAD) is caused by recessive variants in PLA2G6 and is a lethal pediatric neurodegenerative disorder. Loss of the Drosophila homolog of PLA2G6, leads to ceramide accumulation, lysosome expansion, and mitochondrial defects. Here, we report that retromer function, ceramide metabolism, the endolysosomal pathway, and mitochondrial morphology are affected in INAD patient-derived neurons. We show that in INAD mouse models the same features are affected in Purkinje cells, arguing that the neuropathological mechanisms are evolutionary conserved and that these features can be used as biomarkers. We tested 20 drugs that target these pathways and found that Ambroxol, Desipramine, Azoramide, and Genistein alleviate neurodegenerative phenotypes in INAD flies and INAD patient-derived NPCs. We also develop an AAV-based gene therapy approach that delays neurodegeneration and prolongs lifespan in an INAD mouse model.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting file; Source Data files have been provided for Figures 1, 3, 4 and Suppl. Figure 1.

Article and author information

Author details

  1. Guang Lin

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5594-3397
  2. Burak Tepe

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4371-2502
  3. Geoff McGrane

    New York Stem Cell Foundation, New York, United States
    Competing interests
    No competing interests declared.
  4. Regine C Tipon

    New York Stem Cell Foundation, New York, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5473-7353
  5. Gist Croft

    New York Stem Cell Foundation, New York, United States
    Competing interests
    No competing interests declared.
  6. Leena Panwala

    INADcure Foundation, New Jersey, United States
    Competing interests
    No competing interests declared.
  7. Amanda Hope

    INADcure Foundation, New Jersey, United States
    Competing interests
    No competing interests declared.
  8. Agnes JH Liang

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  9. Zhongyuan Zuo

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  10. Seul Kee Byeon

    Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, United States
    Competing interests
    No competing interests declared.
  11. Lily Wang

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  12. Akhilesh Pandey

    Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9943-6127
  13. Hugo J Bellen

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    For correspondence
    hbellen@bcm.edu
    Competing interests
    Hugo J Bellen, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5992-5989

Funding

Baylor College of Medicine (P50HD103555)

  • Hugo J Bellen

Huffington Foundation

  • Hugo J Bellen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental animals were treated in compliance with the United States Department of Health and Human Services and the Baylor College of Medicine IACUC guidelines. Protocol (AN-5596).

Copyright

© 2023, Lin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,371
    views
  • 363
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Guang Lin
  2. Burak Tepe
  3. Geoff McGrane
  4. Regine C Tipon
  5. Gist Croft
  6. Leena Panwala
  7. Amanda Hope
  8. Agnes JH Liang
  9. Zhongyuan Zuo
  10. Seul Kee Byeon
  11. Lily Wang
  12. Akhilesh Pandey
  13. Hugo J Bellen
(2023)
Exploring therapeutic strategies for infantile neuronal axonal dystrophy (INAD/PARK14)
eLife 12:e82555.
https://doi.org/10.7554/eLife.82555

Share this article

https://doi.org/10.7554/eLife.82555

Further reading

    1. Neuroscience
    Gergely F Turi, Sasa Teng ... Yueqing Peng
    Research Article

    Synchronous neuronal activity is organized into neuronal oscillations with various frequency and time domains across different brain areas and brain states. For example, hippocampal theta, gamma, and sharp wave oscillations are critical for memory formation and communication between hippocampal subareas and the cortex. In this study, we investigated the neuronal activity of the dentate gyrus (DG) with optical imaging tools during sleep-wake cycles in mice. We found that the activity of major glutamatergic cell populations in the DG is organized into infraslow oscillations (0.01–0.03 Hz) during NREM sleep. Although the DG is considered a sparsely active network during wakefulness, we found that 50% of granule cells and about 25% of mossy cells exhibit increased activity during NREM sleep, compared to that during wakefulness. Further experiments revealed that the infraslow oscillation in the DG was correlated with rhythmic serotonin release during sleep, which oscillates at the same frequency but in an opposite phase. Genetic manipulation of 5-HT receptors revealed that this neuromodulatory regulation is mediated by Htr1a receptors and the knockdown of these receptors leads to memory impairment. Together, our results provide novel mechanistic insights into how the 5-HT system can influence hippocampal activity patterns during sleep.

    1. Neuroscience
    Sven Ohl, Martin Rolfs
    Research Article

    Detecting causal relations structures our perception of events in the world. Here, we determined for visual interactions whether generalized (i.e. feature-invariant) or specialized (i.e. feature-selective) visual routines underlie the perception of causality. To this end, we applied a visual adaptation protocol to assess the adaptability of specific features in classical launching events of simple geometric shapes. We asked observers to report whether they observed a launch or a pass in ambiguous test events (i.e. the overlap between two discs varied from trial to trial). After prolonged exposure to causal launch events (the adaptor) defined by a particular set of features (i.e. a particular motion direction, motion speed, or feature conjunction), observers were less likely to see causal launches in subsequent ambiguous test events than before adaptation. Crucially, adaptation was contingent on the causal impression in launches as demonstrated by a lack of adaptation in non-causal control events. We assessed whether this negative aftereffect transfers to test events with a new set of feature values that were not presented during adaptation. Processing in specialized (as opposed to generalized) visual routines predicts that the transfer of visual adaptation depends on the feature similarity of the adaptor and the test event. We show that the negative aftereffects do not transfer to unadapted launch directions but do transfer to launch events of different speeds. Finally, we used colored discs to assign distinct feature-based identities to the launching and the launched stimulus. We found that the adaptation transferred across colors if the test event had the same motion direction as the adaptor. In summary, visual adaptation allowed us to carve out a visual feature space underlying the perception of causality and revealed specialized visual routines that are tuned to a launch’s motion direction.