Exploring therapeutic strategies for infantile neuronal axonal dystrophy (INAD/PARK14)

  1. Guang Lin
  2. Burak Tepe
  3. Geoff McGrane
  4. Regine C Tipon
  5. Gist Croft
  6. Leena Panwala
  7. Amanda Hope
  8. Agnes JH Liang
  9. Zhongyuan Zuo
  10. Seul Kee Byeon
  11. Lily Wang
  12. Akhilesh Pandey
  13. Hugo J Bellen  Is a corresponding author
  1. Baylor College of Medicine, United States
  2. New York Stem Cell Foundation, United States
  3. INADcure Foundation, United States
  4. Mayo Clinic, United States

Abstract

Infantile Neuroaxonal Dystrophy (INAD) is caused by recessive variants in PLA2G6 and is a lethal pediatric neurodegenerative disorder. Loss of the Drosophila homolog of PLA2G6, leads to ceramide accumulation, lysosome expansion, and mitochondrial defects. Here, we report that retromer function, ceramide metabolism, the endolysosomal pathway, and mitochondrial morphology are affected in INAD patient-derived neurons. We show that in INAD mouse models the same features are affected in Purkinje cells, arguing that the neuropathological mechanisms are evolutionary conserved and that these features can be used as biomarkers. We tested 20 drugs that target these pathways and found that Ambroxol, Desipramine, Azoramide, and Genistein alleviate neurodegenerative phenotypes in INAD flies and INAD patient-derived NPCs. We also develop an AAV-based gene therapy approach that delays neurodegeneration and prolongs lifespan in an INAD mouse model.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting file; Source Data files have been provided for Figures 1, 3, 4 and Suppl. Figure 1.

Article and author information

Author details

  1. Guang Lin

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5594-3397
  2. Burak Tepe

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4371-2502
  3. Geoff McGrane

    New York Stem Cell Foundation, New York, United States
    Competing interests
    No competing interests declared.
  4. Regine C Tipon

    New York Stem Cell Foundation, New York, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5473-7353
  5. Gist Croft

    New York Stem Cell Foundation, New York, United States
    Competing interests
    No competing interests declared.
  6. Leena Panwala

    INADcure Foundation, New Jersey, United States
    Competing interests
    No competing interests declared.
  7. Amanda Hope

    INADcure Foundation, New Jersey, United States
    Competing interests
    No competing interests declared.
  8. Agnes JH Liang

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  9. Zhongyuan Zuo

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  10. Seul Kee Byeon

    Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, United States
    Competing interests
    No competing interests declared.
  11. Lily Wang

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  12. Akhilesh Pandey

    Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9943-6127
  13. Hugo J Bellen

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    For correspondence
    hbellen@bcm.edu
    Competing interests
    Hugo J Bellen, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5992-5989

Funding

Baylor College of Medicine (P50HD103555)

  • Hugo J Bellen

Huffington Foundation

  • Hugo J Bellen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental animals were treated in compliance with the United States Department of Health and Human Services and the Baylor College of Medicine IACUC guidelines. Protocol (AN-5596).

Copyright

© 2023, Lin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,323
    views
  • 353
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Guang Lin
  2. Burak Tepe
  3. Geoff McGrane
  4. Regine C Tipon
  5. Gist Croft
  6. Leena Panwala
  7. Amanda Hope
  8. Agnes JH Liang
  9. Zhongyuan Zuo
  10. Seul Kee Byeon
  11. Lily Wang
  12. Akhilesh Pandey
  13. Hugo J Bellen
(2023)
Exploring therapeutic strategies for infantile neuronal axonal dystrophy (INAD/PARK14)
eLife 12:e82555.
https://doi.org/10.7554/eLife.82555

Share this article

https://doi.org/10.7554/eLife.82555

Further reading

    1. Neuroscience
    David C Williams, Amanda Chu ... Michael A McDannald
    Research Advance

    Recognizing and responding to threat cues is essential to survival. Freezing is a predominant threat behavior in rats. We have recently shown that a threat cue can organize diverse behaviors beyond freezing, including locomotion (Chu et al., 2024). However, that experimental design was complex, required many sessions, and had rats receive many foot shock presentations. Moreover, the findings were descriptive. Here, we gave female and male Long Evans rats cue light illumination paired or unpaired with foot shock (8 total) in a conditioned suppression setting, using a range of shock intensities (0.15, 0.25, 0.35, or 0.50 mA). We found that conditioned suppression was only observed at higher foot shock intensities (0.35 mA and 0.50 mA). We constructed comprehensive temporal ethograms by scoring 22,272 frames across 12 behavior categories in 200-ms intervals around cue light illumination. The 0.50 mA and 0.35 mA shock-paired visual cues suppressed reward seeking, rearing, and scaling, as well as light-directed rearing and light-directed scaling. The shock-paired visual cue further elicited locomotion and freezing. Linear discriminant analyses showed that ethogram data could accurately classify rats into paired and unpaired groups. Using complete ethogram data produced superior classification compared to behavior subsets, including an Immobility subset featuring freezing. The results demonstrate diverse threat behaviors – in a short and simple procedure – containing sufficient information to distinguish the visual fear conditioning status of individual rats.

    1. Neuroscience
    Agnieszka Glica, Katarzyna Wasilewska ... Katarzyna Jednoróg
    Research Article

    The neural noise hypothesis of dyslexia posits an imbalance between excitatory and inhibitory (E/I) brain activity as an underlying mechanism of reading difficulties. This study provides the first direct test of this hypothesis using both electroencephalography (EEG) power spectrum measures in 120 Polish adolescents and young adults (60 with dyslexia, 60 controls) and glutamate (Glu) and gamma-aminobutyric acid (GABA) concentrations from magnetic resonance spectroscopy (MRS) at 7T MRI scanner in half of the sample. Our results, supported by Bayesian statistics, show no evidence of E/I balance differences between groups, challenging the hypothesis that cortical hyperexcitability underlies dyslexia. These findings suggest that alternative mechanisms must be explored and highlight the need for further research into the E/I balance and its role in neurodevelopmental disorders.