THINGS-data, a multimodal collection of large-scale datasets for investigating object representations in human brain and behavior

  1. Martin N Hebart  Is a corresponding author
  2. Oliver Contier
  3. Lina Teichmann
  4. Adam H Rockter
  5. Charles Y Zheng
  6. Alexis Kidder
  7. Anna Corriveau
  8. Maryam Vaziri-Pashkam
  9. Chris I Baker
  1. Max Planck Institute for Human Cognitive and Brain Sciences, Germany
  2. National Institute of Mental Health, United States

Abstract

Understanding object representations requires a broad, comprehensive sampling of the objects in our visual world with dense measurements of brain activity and behavior. Here we present THINGS-data, a multimodal collection of large-scale neuroimaging and behavioral datasets in humans, comprising densely-sampled functional MRI and magnetoencephalographic recordings, as well as 4.70 million similarity judgments in response to thousands of photographic images for up to 1,854 object concepts. THINGS-data is unique in its breadth of richly-annotated objects, allowing for testing countless hypotheses at scale while assessing the reproducibility of previous findings. Beyond the unique insights promised by each individual dataset, the multimodality of THINGS-data allows combining datasets for a much broader view into object processing than previously possible. Our analyses demonstrate the high quality of the datasets and provide five examples of hypothesis-driven and data-driven applications. THINGS-data constitutes the core public release of the THINGS initiative (https://things-initiative.org) for bridging the gap between disciplines and the advancement of cognitive neuroscience.

Data availability

All parts of the THINGS-data collection are freely available on scientific data repositories. We provide the raw MRI (https://openneuro.org/datasets/ds004192) and raw MEG (https://openneuro.org/datasets/ds004212) datasets in BIDS format98 on OpenNeuro109. In addition to these raw datasets, we provide the raw and preprocessed MEG data as well as the raw and derivative MRI data on Figshare110 (https://doi.org/10.25452/figshare.plus.c.6161151). The MEG data derivatives include preprocessed and epoched data that are compatible with MNE-python and CoSMoMVPA in MATLAB. The MRI data derivatives include single trial response estimates, category-selective and retinotopic regions of interest, cortical flatmaps, independent component based noise regressors, voxel-wise noise ceilings, and estimates of subject specific retinotopic parameters. In addition, we included the preprocessed and epoched eyetracking data that were recorded during the MEG experiment in the OpenNeuro repository. The behavioral triplet odd-one-out dataset can be accessed on OSF (https://osf.io/f5rn6/, https://doi.org/10.17605/OSF.IO/F5RN6).

The following data sets were generated

Article and author information

Author details

  1. Martin N Hebart

    Vision and Computational Cognition Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
    For correspondence
    hebart@cbs.mpg.de
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7257-428X
  2. Oliver Contier

    Max Planck Institute for Human Cognitive and Brain Sciences, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2983-4709
  3. Lina Teichmann

    Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, United States
    Competing interests
    No competing interests declared.
  4. Adam H Rockter

    Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2446-717X
  5. Charles Y Zheng

    Machine Learning Team, National Institute of Mental Health, Bethesda, United States
    Competing interests
    No competing interests declared.
  6. Alexis Kidder

    Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, United States
    Competing interests
    No competing interests declared.
  7. Anna Corriveau

    Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, United States
    Competing interests
    No competing interests declared.
  8. Maryam Vaziri-Pashkam

    Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1830-2501
  9. Chris I Baker

    Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, United States
    Competing interests
    Chris I Baker, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6861-8964

Funding

National Institutes of Health (ZIA-MH-002909)

  • Martin N Hebart
  • Lina Teichmann
  • Adam H Rockter
  • Alexis Kidder
  • Anna Corriveau
  • Maryam Vaziri-Pashkam
  • Chris I Baker

National Institutes of Health (ZIC-MH002968)

  • Charles Y Zheng

Max-Planck-Gesellschaft (Max Planck Research Group M.TN.A.NEPF0009)

  • Martin N Hebart
  • Oliver Contier

European Research Council (Starting Grant StG-2021-101039712)

  • Martin N Hebart

Hessisches Ministerium für Wissenschaft und Kunst (LOEWE Start Professorship)

  • Martin N Hebart

Max Planck School of Cognition

  • Oliver Contier

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All research participants for the fMRI and MEG studies provided informed consent in participation and data sharing, and they received financial compensation for taking part in the respective studies. The research was approved by the NIH Institutional Review Board as part of the study protocol 93-M-0170 (NCT00001360).All research participants taking part in the online behavioral study provided informed consent for the participation in the study. The online study was conducted in accordance with all relevant ethical regulations and approved by the NIH Office of Human Research Subject Protection (OHSRP).

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 8,640
    views
  • 1,168
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Martin N Hebart
  2. Oliver Contier
  3. Lina Teichmann
  4. Adam H Rockter
  5. Charles Y Zheng
  6. Alexis Kidder
  7. Anna Corriveau
  8. Maryam Vaziri-Pashkam
  9. Chris I Baker
(2023)
THINGS-data, a multimodal collection of large-scale datasets for investigating object representations in human brain and behavior
eLife 12:e82580.
https://doi.org/10.7554/eLife.82580

Share this article

https://doi.org/10.7554/eLife.82580

Further reading

    1. Neuroscience
    Rongxin Fang, Aaron Halpern ... Xiaowei Zhuang
    Tools and Resources

    Multiplexed error-robust fluorescence in situ hybridization (MERFISH) allows genome-scale imaging of RNAs in individual cells in intact tissues. To date, MERFISH has been applied to image thin-tissue samples of ~10 µm thickness. Here, we present a thick-tissue three-dimensional (3D) MERFISH imaging method, which uses confocal microscopy for optical sectioning, deep learning for increasing imaging speed and quality, as well as sample preparation and imaging protocol optimized for thick samples. We demonstrated 3D MERFISH on mouse brain tissue sections of up to 200 µm thickness with high detection efficiency and accuracy. We anticipate that 3D thick-tissue MERFISH imaging will broaden the scope of questions that can be addressed by spatial genomics.

    1. Neuroscience
    Sam E Benezra, Kripa B Patel ... Randy M Bruno
    Research Article

    Learning alters cortical representations and improves perception. Apical tuft dendrites in cortical layer 1, which are unique in their connectivity and biophysical properties, may be a key site of learning-induced plasticity. We used both two-photon and SCAPE microscopy to longitudinally track tuft-wide calcium spikes in apical dendrites of layer 5 pyramidal neurons in barrel cortex as mice learned a tactile behavior. Mice were trained to discriminate two orthogonal directions of whisker stimulation. Reinforcement learning, but not repeated stimulus exposure, enhanced tuft selectivity for both directions equally, even though only one was associated with reward. Selective tufts emerged from initially unresponsive or low-selectivity populations. Animal movement and choice did not account for changes in stimulus selectivity. Enhanced selectivity persisted even after rewards were removed and animals ceased performing the task. We conclude that learning produces long-lasting realignment of apical dendrite tuft responses to behaviorally relevant dimensions of a task.