THINGS-data, a multimodal collection of large-scale datasets for investigating object representations in human brain and behavior

  1. Martin N Hebart  Is a corresponding author
  2. Oliver Contier
  3. Lina Teichmann
  4. Adam H Rockter
  5. Charles Y Zheng
  6. Alexis Kidder
  7. Anna Corriveau
  8. Maryam Vaziri-Pashkam
  9. Chris I Baker
  1. Max Planck Institute for Human Cognitive and Brain Sciences, Germany
  2. National Institute of Mental Health, United States

Abstract

Understanding object representations requires a broad, comprehensive sampling of the objects in our visual world with dense measurements of brain activity and behavior. Here we present THINGS-data, a multimodal collection of large-scale neuroimaging and behavioral datasets in humans, comprising densely-sampled functional MRI and magnetoencephalographic recordings, as well as 4.70 million similarity judgments in response to thousands of photographic images for up to 1,854 object concepts. THINGS-data is unique in its breadth of richly-annotated objects, allowing for testing countless hypotheses at scale while assessing the reproducibility of previous findings. Beyond the unique insights promised by each individual dataset, the multimodality of THINGS-data allows combining datasets for a much broader view into object processing than previously possible. Our analyses demonstrate the high quality of the datasets and provide five examples of hypothesis-driven and data-driven applications. THINGS-data constitutes the core public release of the THINGS initiative (https://things-initiative.org) for bridging the gap between disciplines and the advancement of cognitive neuroscience.

Data availability

All parts of the THINGS-data collection are freely available on scientific data repositories. We provide the raw MRI (https://openneuro.org/datasets/ds004192) and raw MEG (https://openneuro.org/datasets/ds004212) datasets in BIDS format98 on OpenNeuro109. In addition to these raw datasets, we provide the raw and preprocessed MEG data as well as the raw and derivative MRI data on Figshare110 (https://doi.org/10.25452/figshare.plus.c.6161151). The MEG data derivatives include preprocessed and epoched data that are compatible with MNE-python and CoSMoMVPA in MATLAB. The MRI data derivatives include single trial response estimates, category-selective and retinotopic regions of interest, cortical flatmaps, independent component based noise regressors, voxel-wise noise ceilings, and estimates of subject specific retinotopic parameters. In addition, we included the preprocessed and epoched eyetracking data that were recorded during the MEG experiment in the OpenNeuro repository. The behavioral triplet odd-one-out dataset can be accessed on OSF (https://osf.io/f5rn6/, https://doi.org/10.17605/OSF.IO/F5RN6).

The following data sets were generated

Article and author information

Author details

  1. Martin N Hebart

    Vision and Computational Cognition Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
    For correspondence
    hebart@cbs.mpg.de
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7257-428X
  2. Oliver Contier

    Max Planck Institute for Human Cognitive and Brain Sciences, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2983-4709
  3. Lina Teichmann

    Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, United States
    Competing interests
    No competing interests declared.
  4. Adam H Rockter

    Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2446-717X
  5. Charles Y Zheng

    Machine Learning Team, National Institute of Mental Health, Bethesda, United States
    Competing interests
    No competing interests declared.
  6. Alexis Kidder

    Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, United States
    Competing interests
    No competing interests declared.
  7. Anna Corriveau

    Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, United States
    Competing interests
    No competing interests declared.
  8. Maryam Vaziri-Pashkam

    Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1830-2501
  9. Chris I Baker

    Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, United States
    Competing interests
    Chris I Baker, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6861-8964

Funding

National Institutes of Health (ZIA-MH-002909)

  • Martin N Hebart
  • Lina Teichmann
  • Adam H Rockter
  • Alexis Kidder
  • Anna Corriveau
  • Maryam Vaziri-Pashkam
  • Chris I Baker

National Institutes of Health (ZIC-MH002968)

  • Charles Y Zheng

Max-Planck-Gesellschaft (Max Planck Research Group M.TN.A.NEPF0009)

  • Martin N Hebart
  • Oliver Contier

European Research Council (Starting Grant StG-2021-101039712)

  • Martin N Hebart

Hessisches Ministerium für Wissenschaft und Kunst (LOEWE Start Professorship)

  • Martin N Hebart

Max Planck School of Cognition

  • Oliver Contier

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All research participants for the fMRI and MEG studies provided informed consent in participation and data sharing, and they received financial compensation for taking part in the respective studies. The research was approved by the NIH Institutional Review Board as part of the study protocol 93-M-0170 (NCT00001360).All research participants taking part in the online behavioral study provided informed consent for the participation in the study. The online study was conducted in accordance with all relevant ethical regulations and approved by the NIH Office of Human Research Subject Protection (OHSRP).

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 8,207
    views
  • 1,120
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Martin N Hebart
  2. Oliver Contier
  3. Lina Teichmann
  4. Adam H Rockter
  5. Charles Y Zheng
  6. Alexis Kidder
  7. Anna Corriveau
  8. Maryam Vaziri-Pashkam
  9. Chris I Baker
(2023)
THINGS-data, a multimodal collection of large-scale datasets for investigating object representations in human brain and behavior
eLife 12:e82580.
https://doi.org/10.7554/eLife.82580

Share this article

https://doi.org/10.7554/eLife.82580

Further reading

    1. Neuroscience
    Samyogita Hardikar, Bronte Mckeown ... Jonathan Smallwood
    Research Article

    Complex macro-scale patterns of brain activity that emerge during periods of wakeful rest provide insight into the organisation of neural function, how these differentiate individuals based on their traits, and the neural basis of different types of self-generated thoughts. Although brain activity during wakeful rest is valuable for understanding important features of human cognition, its unconstrained nature makes it difficult to disentangle neural features related to personality traits from those related to the thoughts occurring at rest. Our study builds on recent perspectives from work on ongoing conscious thought that highlight the interactions between three brain networks – ventral and dorsal attention networks, as well as the default mode network. We combined measures of personality with state-of-the-art indices of ongoing thoughts at rest and brain imaging analysis and explored whether this ‘tri-partite’ view can provide a framework within which to understand the contribution of states and traits to observed patterns of neural activity at rest. To capture macro-scale relationships between different brain systems, we calculated cortical gradients to describe brain organisation in a low-dimensional space. Our analysis established that for more introverted individuals, regions of the ventral attention network were functionally more aligned to regions of the somatomotor system and the default mode network. At the same time, a pattern of detailed self-generated thought was associated with a decoupling of regions of dorsal attention from regions in the default mode network. Our study, therefore, establishes that interactions between attention systems and the default mode network are important influences on ongoing thought at rest and highlights the value of integrating contemporary perspectives on conscious experience when understanding patterns of brain activity at rest.

    1. Neuroscience
    Ana Maria Ichim, Harald Barzan ... Raul Cristian Muresan
    Review Article

    Gamma oscillations in brain activity (30–150 Hz) have been studied for over 80 years. Although in the past three decades significant progress has been made to try to understand their functional role, a definitive answer regarding their causal implication in perception, cognition, and behavior still lies ahead of us. Here, we first review the basic neural mechanisms that give rise to gamma oscillations and then focus on two main pillars of exploration. The first pillar examines the major theories regarding their functional role in information processing in the brain, also highlighting critical viewpoints. The second pillar reviews a novel research direction that proposes a therapeutic role for gamma oscillations, namely the gamma entrainment using sensory stimulation (GENUS). We extensively discuss both the positive findings and the issues regarding reproducibility of GENUS. Going beyond the functional and therapeutic role of gamma, we propose a third pillar of exploration, where gamma, generated endogenously by cortical circuits, is essential for maintenance of healthy circuit function. We propose that four classes of interneurons, namely those expressing parvalbumin (PV), vasointestinal peptide (VIP), somatostatin (SST), and nitric oxide synthase (NOS) take advantage of endogenous gamma to perform active vasomotor control that maintains homeostasis in the neuronal tissue. According to this hypothesis, which we call GAMER (GAmma MEdiated ciRcuit maintenance), gamma oscillations act as a ‘servicing’ rhythm that enables efficient translation of neural activity into vascular responses that are essential for optimal neurometabolic processes. GAMER is an extension of GENUS, where endogenous rather than entrained gamma plays a fundamental role. Finally, we propose several critical experiments to test the GAMER hypothesis.