Abstract

Predicting the thermodynamic stability of proteins is a common and widely used step in protein engineering, and when elucidating the molecular mechanisms behind evolution and disease. Here, we present RaSP, a method for making rapid and accurate predictions of changes in protein stability by leveraging deep learning representations. RaSP performs on-par with biophysics-based methods and enables saturation mutagenesis stability predictions in less than a second per residue. We use RaSP to calculate ∼ 300 million stability changes for nearly all single amino acid changes in the human proteome, and examine variants observed in the human population. We find that variants that are common in the population are substantially depleted for severe destabilization, and that there are substantial differences between benign and pathogenic variants, highlighting the role of protein stability in genetic diseases. RaSP is freely available-including via a Web interface-and enables large-scale analyses of stability in experimental and predicted protein structures.

Data availability

Scripts and data to repeat our analyses are available via: https://github.com/KULL-Centre/_2022_ML-ddG-Blaabjerg/

The following data sets were generated

Article and author information

Author details

  1. Lasse M Blaabjerg

    Department of Biology, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  2. Maher M Kassem

    Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  3. Lydia L Good

    Department of Biology, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5308-8542
  4. Nicolas Jonsson

    Department of Biology, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7838-1814
  5. Matteo Cagiada

    Department of Biology, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  6. Kristoffer E Johansson

    Department of Biology, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  7. Wouter Boomsma

    Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
    For correspondence
    wb@di.ku.dk
    Competing interests
    The authors declare that no competing interests exist.
  8. Amelie Stein

    Department of Biology, University of Copenhagen, Copenhagen, Denmark
    For correspondence
    amelie.stein@bio.ku.dk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5862-1681
  9. Kresten Lindorff-Larsen

    Department of Biology, University of Copenhagen, Copenhagen, Denmark
    For correspondence
    lindorff@bio.ku.dk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4750-6039

Funding

Novo Nordisk Fonden (NNF18OC0033950)

  • Amelie Stein
  • Kresten Lindorff-Larsen

Novo Nordisk Fonden (NNF20OC0062606)

  • Wouter Boomsma

Novo Nordisk Fonden (NNF18OC0052719)

  • Wouter Boomsma

Lundbeckfonden (R272-2017-4528)

  • Amelie Stein

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Blaabjerg et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 12,127
    views
  • 1,387
    downloads
  • 57
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lasse M Blaabjerg
  2. Maher M Kassem
  3. Lydia L Good
  4. Nicolas Jonsson
  5. Matteo Cagiada
  6. Kristoffer E Johansson
  7. Wouter Boomsma
  8. Amelie Stein
  9. Kresten Lindorff-Larsen
(2023)
Rapid protein stability prediction using deep learning representations
eLife 12:e82593.
https://doi.org/10.7554/eLife.82593

Share this article

https://doi.org/10.7554/eLife.82593

Further reading

    1. Computational and Systems Biology
    2. Microbiology and Infectious Disease
    Michael B Hall, Ryan R Wick ... Lachlan Coin
    Research Article

    Variant calling is fundamental in bacterial genomics, underpinning the identification of disease transmission clusters, the construction of phylogenetic trees, and antimicrobial resistance detection. This study presents a comprehensive benchmarking of variant calling accuracy in bacterial genomes using Oxford Nanopore Technologies (ONT) sequencing data. We evaluated three ONT basecalling models and both simplex (single-strand) and duplex (dual-strand) read types across 14 diverse bacterial species. Our findings reveal that deep learning-based variant callers, particularly Clair3 and DeepVariant, significantly outperform traditional methods and even exceed the accuracy of Illumina sequencing, especially when applied to ONT’s super-high accuracy model. ONT’s superior performance is attributed to its ability to overcome Illumina’s errors, which often arise from difficulties in aligning reads in repetitive and variant-dense genomic regions. Moreover, the use of high-performing variant callers with ONT’s super-high accuracy data mitigates ONT’s traditional errors in homopolymers. We also investigated the impact of read depth on variant calling, demonstrating that 10× depth of ONT super-accuracy data can achieve precision and recall comparable to, or better than, full-depth Illumina sequencing. These results underscore the potential of ONT sequencing, combined with advanced variant calling algorithms, to replace traditional short-read sequencing methods in bacterial genomics, particularly in resource-limited settings.

    1. Computational and Systems Biology
    Anas Bedraoui
    Feature Article

    Early-career researchers in the Global South have to overcome obstacles that are not found in high-income countries, but in Morocco at least, the future is looking brighter than the past.