Polygenic risk scores for the prediction of common cancers in East Asians: A population-based prospective cohort study

  1. Peh Joo Ho
  2. Iain BeeHuat Tan
  3. Dawn Qingqing Chong
  4. Chiea Chuen Khor
  5. Jian-Min Yuan
  6. Woon-Puay Koh
  7. Rajkumar Dorajoo  Is a corresponding author
  8. Jingmei Li  Is a corresponding author
  1. Genome Institute of Singapore, Singapore
  2. National Cancer Centre Singapore, Singapore
  3. UPMC Hillman Cancer Center, United States
  4. National University of Singapore, Singapore

Abstract

Background: To evaluate the utility of polygenic risk scores (PRS) in identifying high-risk individuals, different publicly available PRS for breast (n=85), prostate (n=37), colorectal (n=22) and lung cancers (n=11) were examined in a prospective study of 21,694 Chinese adults.

Methods: We constructed PRS using weights curated in the online PGS Catalog. PRS performance was evaluated by distribution, discrimination, predictive ability, and calibration. Hazard ratios (HR) and corresponding confidence intervals [CI] of the common cancers after 20 years of follow-up were estimated using Cox proportional hazard models for different levels of PRS.

Results: A total of 495 breast, 308 prostate, 332 female-colorectal, 409 male-colorectal, 181 female-lung and 381 male-lung incident cancers were identified. The area under receiver operating characteristic curve for the best performing site-specific PRS were 0.61 (PGS000873, breast), 0.70 (PGS00662, prostate), 0.65 (PGS000055, female-colorectal), 0.60 (PGS000734, male-colorectal) and 0.56 (PGS000721, female-lung), and 0.58 (PGS000070, male-lung), respectively. Compared to the middle quintile, individuals in the highest cancer-specific PRS quintile were 64% more likely to develop cancers of the breast, prostate, and colorectal. For lung cancer, the lowest cancer-specific PRS quintile was associated with 28-34% decreased risk compared to the middle quintile. In contrast, the hazard ratios observed for quintiles 4 (female-lung: 0.95 [0.61-1.47]; male-lung: 1.14 [0.82-1.57]) and 5 (female-lung: 0.95 [0.61-1.47]) were not significantly different from that for the middle quintile.

Conclusions: Site-specific PRSs can stratify the risk of developing breast, prostate, and colorectal cancers in this East Asian population. Appropriate correction factors may be required to improve calibration.

Funding This work is supported by the National Research Foundation Singapore (NRF-NRFF2017-02), PRECISION Health Research, Singapore (PRECISE) and the Agency for Science, Technology and Research (A*STAR). WP Koh was supported by National Medical Research Council, Singapore (NMRC/CSA/0055/2013). CC Khor was supported by National Research Foundation Singapore (NRF-NRFI2018-01). Rajkumar Dorajoo received a grant from the Agency for Science, Technology and Research Career Development Award (A*STAR CDA - 202D8090), and from Ministry of Health Healthy Longevity Catalyst Award (HLCA20Jan-0022). The Singapore Chinese Health Study was supported by grants from the National Medical Research Council, Singapore (NMRC/CIRG/1456/2016) and the U.S. National Institutes of Health [NIH] (R01 CA144034 and UM1 CA182876).

Data availability

All polygenic risk scores used in this study are publicly available in the PGS Catalog (https://www.pgscatalog.org).The data that support the findings of our study are available from the corresponding authors of the study upon reasonable request (Dr Rajkumar s/o Dorajoo, dorajoor@gis.a-star.edu.sg and Dr Jingmei Li, lijm1@gis.a-star.edu.sg). More information regarding the data access to SCHS can be found at: https://sph.nus.edu.sg/research/cohort-schs/. The data are not publicly available due to Singapore laws.Source Data 1 contain the numerical data used to generate the figure 1.The code for the study is uploaded as Source Code 1.

The following previously published data sets were used

Article and author information

Author details

  1. Peh Joo Ho

    Genome Institute of Singapore, Singapore, Singapore
    Competing interests
    No competing interests declared.
  2. Iain BeeHuat Tan

    Genome Institute of Singapore, Singapore, Singapore
    Competing interests
    No competing interests declared.
  3. Dawn Qingqing Chong

    Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
    Competing interests
    No competing interests declared.
  4. Chiea Chuen Khor

    Genome Institute of Singapore, Singapore, Singapore
    Competing interests
    No competing interests declared.
  5. Jian-Min Yuan

    UPMC Hillman Cancer Center, Pittsburgh, United States
    Competing interests
    No competing interests declared.
  6. Woon-Puay Koh

    Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
    Competing interests
    No competing interests declared.
  7. Rajkumar Dorajoo

    Genome Institute of Singapore, Singapore, Singapore
    For correspondence
    dorajoor@gis.a-star.edu.sg
    Competing interests
    Rajkumar Dorajoo, received a grant from the Agency for Science, Technology and Research Career Development Award (A*STAR CDA - 202D8090, and from Ministry of Health Healthy Longevity Catalyst Award (HLCA20Jan-0022). The author has no other competing interests to declare..
  8. Jingmei Li

    Genome Institute of Singapore, Singapore, Singapore
    For correspondence
    lijm1@gis.a-star.edu.sg
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8587-7511

Funding

National Research Foundation Singapore (PRECISE)

  • Jingmei Li

National Medical Research Council (NMRC/CSA/0055/2013)

  • Woon-Puay Koh

National Research Foundation Singapore (NRF-NRFI2018-01)

  • Chiea Chuen Khor

Ministry of Health -Singapore (HLCA20Jan-0022)

  • Rajkumar Dorajoo

National Institutes of Health (R01 CA144034 and UM1 CA182876)

  • Jian-Min Yuan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Qifeng Yang, Qilu Hospital of Shandong University, China

Ethics

Human subjects: The study was approved by the Institutional Review Boards of the National University of Singapore, University of Pittsburgh, and the Agency for Science, Technology and Research (A*STAR, reference number 2022-042). Written, informed consent was obtained from all study participants.

Version history

  1. Received: August 10, 2022
  2. Preprint posted: September 15, 2022 (view preprint)
  3. Accepted: March 24, 2023
  4. Accepted Manuscript published: March 27, 2023 (version 1)
  5. Version of Record published: May 4, 2023 (version 2)

Copyright

© 2023, Ho et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 701
    Page views
  • 115
    Downloads
  • 3
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Peh Joo Ho
  2. Iain BeeHuat Tan
  3. Dawn Qingqing Chong
  4. Chiea Chuen Khor
  5. Jian-Min Yuan
  6. Woon-Puay Koh
  7. Rajkumar Dorajoo
  8. Jingmei Li
(2023)
Polygenic risk scores for the prediction of common cancers in East Asians: A population-based prospective cohort study
eLife 12:e82608.
https://doi.org/10.7554/eLife.82608

Share this article

https://doi.org/10.7554/eLife.82608

Further reading

    1. Epidemiology and Global Health
    Yuchen Zhang, Yitang Sun ... Kaixiong Ye
    Research Article

    Background:

    Circulating omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) have been associated with various chronic diseases and mortality, but results are conflicting. Few studies examined the role of omega-6/omega-3 ratio in mortality.

    Methods:

    We investigated plasma omega-3 and omega-6 PUFAs and their ratio in relation to all-cause and cause-specific mortality in a large prospective cohort, the UK Biobank. Of 85,425 participants who had complete information on circulating PUFAs, 6461 died during follow-up, including 2794 from cancer and 1668 from cardiovascular disease (CVD). Associations were estimated by multivariable Cox proportional hazards regression with adjustment for relevant risk factors.

    Results:

    Risk for all three mortality outcomes increased as the ratio of omega-6/omega-3 PUFAs increased (all Ptrend <0.05). Comparing the highest to the lowest quintiles, individuals had 26% (95% CI, 15–38%) higher total mortality, 14% (95% CI, 0–31%) higher cancer mortality, and 31% (95% CI, 10–55%) higher CVD mortality. Moreover, omega-3 and omega-6 PUFAs in plasma were all inversely associated with all-cause, cancer, and CVD mortality, with omega-3 showing stronger effects.

    Conclusions:

    Using a population-based cohort in UK Biobank, our study revealed a strong association between the ratio of circulating omega-6/omega-3 PUFAs and the risk of all-cause, cancer, and CVD mortality.

    Funding:

    Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institute of Health under the award number R35GM143060 (KY). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

    1. Ecology
    2. Epidemiology and Global Health
    Aleksandra Kovacevic, David RM Smith ... Lulla Opatowski
    Research Article

    Non-pharmaceutical interventions implemented to block SARS-CoV-2 transmission in early 2020 led to global reductions in the incidence of invasive pneumococcal disease (IPD). By contrast, most European countries reported an increase in antibiotic resistance among invasive Streptococcus pneumoniae isolates from 2019 to 2020, while an increasing number of studies reported stable pneumococcal carriage prevalence over the same period. To disentangle the impacts of the COVID-19 pandemic on pneumococcal epidemiology in the community setting, we propose a mathematical model formalizing simultaneous transmission of SARS-CoV-2 and antibiotic-sensitive and -resistant strains of S. pneumoniae. To test hypotheses underlying these trends five mechanisms were built into the model and examined: (1) a population-wide reduction of antibiotic prescriptions in the community, (2) lockdown effect on pneumococcal transmission, (3) a reduced risk of developing an IPD due to the absence of common respiratory viruses, (4) community azithromycin use in COVID-19 infected individuals, (5) and a longer carriage duration of antibiotic-resistant pneumococcal strains. Among 31 possible pandemic scenarios involving mechanisms individually or in combination, model simulations surprisingly identified only two scenarios that reproduced the reported trends in the general population. They included factors (1), (3), and (4). These scenarios replicated a nearly 50% reduction in annual IPD, and an increase in antibiotic resistance from 20% to 22%, all while maintaining a relatively stable pneumococcal carriage. Exploring further, higher SARS-CoV-2 R0 values and synergistic within-host virus-bacteria interaction mechanisms could have additionally contributed to the observed antibiotic resistance increase. Our work demonstrates the utility of the mathematical modeling approach in unraveling the complex effects of the COVID-19 pandemic responses on AMR dynamics.