Clinical characteristics, racial inequities, and outcomes in patients with breast cancer and COVID-19: a COVID-19 and cancer consortium (CCC19) cohort study
Abstract
Background: Limited information is available for patients with breast cancer (BC) and coronavirus disease 2019 (COVID-19), especially among underrepresented racial/ethnic populations.
Methods: This is a COVID-19 and Cancer Consortium (CCC19) registry-based retrospective cohort study of females with active or history of BC and laboratory-confirmed severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection diagnosed between March 2020 and June 2021 in the US. Primary outcome was COVID-19 severity measured on a five-level ordinal scale, including none of the following complications, hospitalization, intensive care unit admission, mechanical ventilation, and all-cause mortality. Multivariable ordinal logistic regression model identified characteristics associated with COVID-19 severity.
Results: 1,383 female patient records with BC and COVID-19 were included in the analysis, the median age was 61 years, and median follow-up was 90 days. Multivariable analysis revealed higher odds of COVID-19 severity for older age (aOR per decade, 1.48 [95% CI, 1.32 -1.67]); Black patients (aOR 1.74; 95 CI 1.24-2.45), Asian Americans and Pacific Islander patients (aOR 3.40; 95 CI 1.70 - 6.79) and Other (aOR 2.97; 95 CI 1.71-5.17) racial/ethnic groups; worse ECOG performance status (ECOG PS ≥2: aOR, 7.78 [95% CI, 4.83 - 12.5]); pre-existing cardiovascular (aOR, 2.26 [95% CI, 1.63 - 3.15])/pulmonary comorbidities (aOR, 1.65 [95% CI, 1.20 - 2.29]); diabetes mellitus (aOR, 2.25 [95% CI, 1.66 - 3.04]); and active and progressing cancer (aOR, 12.5 [95% CI, 6.89 - 22.6]). Hispanic ethnicity, timing and type of anti-cancer therapy modalities were not significantly associated with worse COVID-19 outcomes. The total all-cause mortality and hospitalization rate for the entire cohort was 9% and 37%, respectively however, it varied according to the BC disease status.
Conclusions: Using one of the largest registries on cancer and COVID-19, we identified patient and BC related factors associated with worse COVID-19 outcomes. After adjusting for baseline characteristics, underrepresented racial/ethnic patients experienced worse outcomes compared to Non-Hispanic White patients.
Funding: This study was partly supported by National Cancer Institute grant number P30 CA068485 to Tianyi Sun, Sanjay Mishra, Benjamin French, Jeremy L. Warner; P30-CA046592 to Christopher R. Friese; P30 CA023100 for Rana R McKay; P30-CA054174 for Pankil K. Shah and Dimpy P. Shah; and the American Cancer Society and Hope Foundation for Cancer Research (MRSG-16-152-01 -CCE) and P30-CA054174 for Dimpy P. Shah. REDCap is developed and supported by Vanderbilt Institute for Clinical and Translational Research grant support (UL1 TR000445 from NCATS/NIH). The funding sources had no role in the writing of the manuscript or the decision to submit it for publication.
Clinical Trial Number: CCC19 registry is registered on ClinicalTrials.gov, NCT04354701.
Data availability
All datasets (with restriction of time variables to protect patient confidentiality) and code associated with the article are available at: https://datadryad.org/stash/dataset/doi:10.5061/dryad.1g1jwsv10
-
Covid-19 and Cancer Consortium (CCC19) breast cancer and racial disparities outcomes study [Dataset]Dryad Digital Repository, doi:10.5061/dryad.1g1jwsv10.
Article and author information
Author details
Funding
National Cancer Institute (P30 CA068485)
- Tianyi Sun
- Sanjay Mishra
- Benjamin French
- Jeremy L Warner
National Cancer Institute (P30-CA046592)
- Christopher R Friese
National Cancer Institute (P30 CA023100)
- Rana R McKay
National Cancer Institute (P30-CA054174)
- Pankil K Shah
- Dimpy P Shah
American Cancer Society (MRSG-16-152-01 -CCE)
- Dimpy P Shah
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: This study was exempt from institutional review board (IRB) review (VUMC IRB#200467) and was approved by IRBs at participating sites per institutional policy. CCC19 registry is registered on ClinicalTrials.gov, NCT04354701.
Copyright
This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.
Metrics
-
- 797
- views
-
- 142
- downloads
-
- 1
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Epidemiology and Global Health
- Genetics and Genomics
Burden of stroke differs by region, which could be attributed to differences in comorbid conditions and ethnicity. Genomewide variation acts as a proxy marker for ethnicity, and comorbid conditions. We present an integrated approach to understand this variation by considering prevalence and mortality rates of stroke and its comorbid risk for 204 countries from 2009 to 2019, and Genome-wide association studies (GWAS) risk variant for all these conditions. Global and regional trend analysis of rates using linear regression, correlation, and proportion analysis, signifies ethnogeographic differences. Interestingly, the comorbid conditions that act as risk drivers for stroke differed by regions, with more of metabolic risk in America and Europe, in contrast to high systolic blood pressure in Asian and African regions. GWAS risk loci of stroke and its comorbid conditions indicate distinct population stratification for each of these conditions, signifying for population-specific risk. Unique and shared genetic risk variants for stroke, and its comorbid and followed up with ethnic-specific variation can help in determining regional risk drivers for stroke. Unique ethnic-specific risk variants and their distinct patterns of linkage disequilibrium further uncover the drivers for phenotypic variation. Therefore, identifying population- and comorbidity-specific risk variants might help in defining the threshold for risk, and aid in developing population-specific prevention strategies for stroke.
-
- Epidemiology and Global Health
- Evolutionary Biology
Several coronaviruses infect humans, with three, including the SARS-CoV2, causing diseases. While coronaviruses are especially prone to induce pandemics, we know little about their evolutionary history, host-to-host transmissions, and biogeography. One of the difficulties lies in dating the origination of the family, a particularly challenging task for RNA viruses in general. Previous cophylogenetic tests of virus-host associations, including in the Coronaviridae family, have suggested a virus-host codiversification history stretching many millions of years. Here, we establish a framework for robustly testing scenarios of ancient origination and codiversification versus recent origination and diversification by host switches. Applied to coronaviruses and their mammalian hosts, our results support a scenario of recent origination of coronaviruses in bats and diversification by host switches, with preferential host switches within mammalian orders. Hotspots of coronavirus diversity, concentrated in East Asia and Europe, are consistent with this scenario of relatively recent origination and localized host switches. Spillovers from bats to other species are rare, but have the highest probability to be towards humans than to any other mammal species, implicating humans as the evolutionary intermediate host. The high host-switching rates within orders, as well as between humans, domesticated mammals, and non-flying wild mammals, indicates the potential for rapid additional spreading of coronaviruses across the world. Our results suggest that the evolutionary history of extant mammalian coronaviruses is recent, and that cases of long-term virus–host codiversification have been largely over-estimated.