Acetylation of a fungal effector that translocates host PR1 facilitates virulence

  1. Jingtao Li
  2. Xiaoying Ma
  3. Chenyang Wang
  4. Sihui Liu
  5. Gang Yu
  6. Mingming Gao
  7. Hengwei Qian
  8. Mengjie Liu
  9. Ben F Luisi
  10. Dean W Gabriel
  11. Wenxing Liang  Is a corresponding author
  1. Qingdao Agricultural University, China
  2. Shanghai Jiao Tong University, China
  3. University of Cambridge, United Kingdom
  4. University of Florida, United States

Abstract

Pathogens utilize a panoply of effectors to manipulate plant defense. However, despite their importance, relatively little is actually known about regulation of these virulence factors. Here, we show that the effector FolSvp1, secreted from fungal pathogen Fusarium oxysporum f. sp. lycopersici (Fol) directly binds and translocates the tomato pathogenesis-related protein1, SlPR1, from the apoplast outside the plasma membrane to the host nucleus via its nuclear localization signal. Relocation of SlPR1 abolishes generation of the defense signaling peptide, CAPE1, from its C-terminus, and as a consequence, facilitates pathogen invasion of plants. The action of FolSvp1 requires covalent modification by acetylation for full virulence in host tomato tissues. The modification is catalyzed by the Fol FolArd1 lysine acetyltransferase prior to secretion. Addition of an acetyl group to one residue, K167, prevents ubiquitination-dependent degradation of FolSvp1 in both Fol and plant cells with different mechanisms, allowing it to function normally in fungal invasion. Either inactivation of FolSvp1 or removal of the acetyl group on K167 leads to impaired pathogenicity of Fol. These findings indicate that acetylation can regulate the stability of effectors of fungal plant pathogens with impact on virulence.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file.

Article and author information

Author details

  1. Jingtao Li

    Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2702-1736
  2. Xiaoying Ma

    Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Chenyang Wang

    Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Sihui Liu

    College of Science and Information, Qingdao Agricultural University, Qingdao, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Gang Yu

    School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6720-7490
  6. Mingming Gao

    Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Hengwei Qian

    Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Mengjie Liu

    Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Ben F Luisi

    Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1144-9877
  10. Dean W Gabriel

    Department of Plant Pathology, University of Florida, Gainesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Wenxing Liang

    Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, China
    For correspondence
    wliang1@qau.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3791-4901

Funding

National Natural Science Foundation of China (31901830)

  • Jingtao Li

Wellcome Trust Investigator (222451/Z/21/Z)

  • Ben F Luisi

National Natural Science Foundation of China (31972213)

  • Wenxing Liang

Natural Science Foundation of Shandong Province (ZR2019BC032)

  • Jingtao Li

Natural Science Foundation of Shandong Province (ZR2020KC003)

  • Wenxing Liang

Ministry of Agriculture of China (2016ZX08009003-001)

  • Wenxing Liang

Key Research and Development Program of Shandong Province (2019YQ017)

  • Wenxing Liang

Shandong Province Double-Hundred Talent Plan"" (WST2018008)

  • Wenxing Liang

Taishan Scholar Project of Shandong Province (tshw20130963)

  • Wenxing Liang

Wellcome Trust Investigator (200873/Z/16/Z)

  • Ben F Luisi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Li et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,221
    views
  • 525
    downloads
  • 27
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jingtao Li
  2. Xiaoying Ma
  3. Chenyang Wang
  4. Sihui Liu
  5. Gang Yu
  6. Mingming Gao
  7. Hengwei Qian
  8. Mengjie Liu
  9. Ben F Luisi
  10. Dean W Gabriel
  11. Wenxing Liang
(2022)
Acetylation of a fungal effector that translocates host PR1 facilitates virulence
eLife 11:e82628.
https://doi.org/10.7554/eLife.82628

Share this article

https://doi.org/10.7554/eLife.82628

Further reading

    1. Computational and Systems Biology
    2. Microbiology and Infectious Disease
    Saugat Poudel, Jason Hyun ... Bernhard O Palsson
    Research Article

    The Staphylococcus aureus clonal complex 8 (CC8) is made up of several subtypes with varying levels of clinical burden; from community-associated methicillin-resistant S. aureus USA300 strains to hospital-associated (HA-MRSA) USA500 strains and ancestral methicillin-susceptible (MSSA) strains. This phenotypic distribution within a single clonal complex makes CC8 an ideal clade to study the emergence of mutations important for antibiotic resistance and community spread. Gene-level analysis comparing USA300 against MSSA and HA-MRSA strains have revealed key horizontally acquired genes important for its rapid spread in the community. However, efforts to define the contributions of point mutations and indels have been confounded by strong linkage disequilibrium resulting from clonal propagation. To break down this confounding effect, we combined genetic association testing with a model of the transcriptional regulatory network (TRN) to find candidate mutations that may have led to changes in gene regulation. First, we used a De Bruijn graph genome-wide association study to enrich mutations unique to the USA300 lineages within CC8. Next, we reconstructed the TRN by using independent component analysis on 670 RNA-sequencing samples from USA300 and non-USA300 CC8 strains which predicted several genes with strain-specific altered expression patterns. Examination of the regulatory region of one of the genes enriched by both approaches, isdH, revealed a 38-bp deletion containing a Fur-binding site and a conserved single-nucleotide polymorphism which likely led to the altered expression levels in USA300 strains. Taken together, our results demonstrate the utility of reconstructed TRNs to address the limits of genetic approaches when studying emerging pathogenic strains.

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Malika Hale, Kennidy K Takehara ... Marion Pepper
    Research Article

    Pseudomonas aeruginosa (PA) is an opportunistic, frequently multidrug-resistant pathogen that can cause severe infections in hospitalized patients. Antibodies against the PA virulence factor, PcrV, protect from death and disease in a variety of animal models. However, clinical trials of PcrV-binding antibody-based products have thus far failed to demonstrate benefit. Prior candidates were derivations of antibodies identified using protein-immunized animal systems and required extensive engineering to optimize binding and/or reduce immunogenicity. Of note, PA infections are common in people with cystic fibrosis (pwCF), who are generally believed to mount normal adaptive immune responses. Here, we utilized a tetramer reagent to detect and isolate PcrV-specific B cells in pwCF and, via single-cell sorting and paired-chain sequencing, identified the B cell receptor (BCR) variable region sequences that confer PcrV-specificity. We derived multiple high affinity anti-PcrV monoclonal antibodies (mAbs) from PcrV-specific B cells across three donors, including mAbs that exhibit potent anti-PA activity in a murine pneumonia model. This robust strategy for mAb discovery expands what is known about PA-specific B cells in pwCF and yields novel mAbs with potential for future clinical use.