Two neuronal peptides encoded from a single transcript regulate mitochondrial complex III in Drosophila

  1. Justin A Bosch  Is a corresponding author
  2. Berrak Ugur
  3. Israel Pichardo-Casas
  4. Jordan Rabasco
  5. Felipe Escobedo
  6. Zhongyuan Zuo
  7. Ben Brown
  8. Susan Celniker
  9. David A Sinclair
  10. Hugo J Bellen
  11. Norbert Perrimon  Is a corresponding author
  1. Harvard University, United States
  2. Howard Hughes Medical Institute, Yale University, United States
  3. Baylor College of Medicine, United States
  4. Lawrence Berkeley National Laboratory, United States

Abstract

Naturally produced peptides (<100 amino acids) are important regulators of physiology, development, and metabolism. Recent studies have predicted that thousands of peptides may be translated from transcripts containing small open reading frames (smORFs). Here, we describe two peptides in Drosophila encoded by conserved smORFs, Sloth1 and Sloth2. These peptides are translated from the same bicistronic transcript and share sequence similarities, suggesting that they encode paralogs. Yet, Sloth1 and Sloth2 are not functionally redundant, and loss of either peptide causes animal lethality, reduced neuronal function, impaired mitochondrial function, and neurodegeneration. We provide evidence that Sloth1/2 are highly expressed in neurons, imported to mitochondria, and regulate mitochondrial complex III assembly. These results suggest that phenotypic analysis of smORF genes in Drosophila can provide a wealth of information on the biological functions of this poorly characterized class of genes.

Data availability

The current manuscript did not generate any datasets. Raw gel and western image source files are present in Supplemental File 4, which can be downloaded at:https://doi.org/10.5061/dryad.83bk3j9vc

The following data sets were generated

Article and author information

Author details

  1. Justin A Bosch

    Department of Genetics, Harvard University, Boston, United States
    For correspondence
    jabosch@hms.harvard.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8499-1566
  2. Berrak Ugur

    Department of Neuroscience, Howard Hughes Medical Institute, Yale University, New Haven, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4806-8891
  3. Israel Pichardo-Casas

    Department of Genetics, Harvard University, Boston, United States
    Competing interests
    No competing interests declared.
  4. Jordan Rabasco

    Department of Genetics, Harvard University, Boston, United States
    Competing interests
    No competing interests declared.
  5. Felipe Escobedo

    Department of Genetics, Harvard University, Boston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6830-9210
  6. Zhongyuan Zuo

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  7. Ben Brown

    Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, United States
    Competing interests
    No competing interests declared.
  8. Susan Celniker

    Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, United States
    Competing interests
    No competing interests declared.
  9. David A Sinclair

    Department of Genetics, Harvard University, Boston, United States
    Competing interests
    No competing interests declared.
  10. Hugo J Bellen

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    Hugo J Bellen, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5992-5989
  11. Norbert Perrimon

    Department of Genetics, Harvard University, Boston, United States
    For correspondence
    perrimon@genetics.med.harvard.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7542-472X

Funding

Damon Runyon Foundation

  • Justin A Bosch

National Institutes of Health (R01GM084947)

  • Susan Celniker

National Institutes of Health (R01GM067761)

  • Susan Celniker

National Institutes of Health (R24OD019847)

  • Susan Celniker

National Institutes of Health (NHGRI HG009352)

  • Susan Celniker

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,064
    views
  • 379
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Justin A Bosch
  2. Berrak Ugur
  3. Israel Pichardo-Casas
  4. Jordan Rabasco
  5. Felipe Escobedo
  6. Zhongyuan Zuo
  7. Ben Brown
  8. Susan Celniker
  9. David A Sinclair
  10. Hugo J Bellen
  11. Norbert Perrimon
(2022)
Two neuronal peptides encoded from a single transcript regulate mitochondrial complex III in Drosophila
eLife 11:e82709.
https://doi.org/10.7554/eLife.82709

Share this article

https://doi.org/10.7554/eLife.82709

Further reading

    1. Genetics and Genomics
    2. Microbiology and Infectious Disease
    Dániel Molnár, Éva Viola Surányi ... Judit Toth
    Research Article

    The sustained success of Mycobacterium tuberculosis as a pathogen arises from its ability to persist within macrophages for extended periods and its limited responsiveness to antibiotics. Furthermore, the high incidence of resistance to the few available antituberculosis drugs is a significant concern, especially since the driving forces of the emergence of drug resistance are not clear. Drug-resistant strains of Mycobacterium tuberculosis can emerge through de novo mutations, however, mycobacterial mutation rates are low. To unravel the effects of antibiotic pressure on genome stability, we determined the genetic variability, phenotypic tolerance, DNA repair system activation, and dNTP pool upon treatment with current antibiotics using Mycobacterium smegmatis. Whole-genome sequencing revealed no significant increase in mutation rates after prolonged exposure to first-line antibiotics. However, the phenotypic fluctuation assay indicated rapid adaptation to antibiotics mediated by non-genetic factors. The upregulation of DNA repair genes, measured using qPCR, suggests that genomic integrity may be maintained through the activation of specific DNA repair pathways. Our results, indicating that antibiotic exposure does not result in de novo adaptive mutagenesis under laboratory conditions, do not lend support to the model suggesting antibiotic resistance development through drug pressure-induced microevolution.

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Sanjarbek Hudaiberdiev, Ivan Ovcharenko
    Research Article

    Enhancers and promoters are classically considered to be bound by a small set of transcription factors (TFs) in a sequence-specific manner. This assumption has come under increasing skepticism as the datasets of ChIP-seq assays of TFs have expanded. In particular, high-occupancy target (HOT) loci attract hundreds of TFs with often no detectable correlation between ChIP-seq peaks and DNA-binding motif presence. Here, we used a set of 1003 TF ChIP-seq datasets (HepG2, K562, H1) to analyze the patterns of ChIP-seq peak co-occurrence in combination with functional genomics datasets. We identified 43,891 HOT loci forming at the promoter (53%) and enhancer (47%) regions. HOT promoters regulate housekeeping genes, whereas HOT enhancers are involved in tissue-specific process regulation. HOT loci form the foundation of human super-enhancers and evolve under strong negative selection, with some of these loci being located in ultraconserved regions. Sequence-based classification analysis of HOT loci suggested that their formation is driven by the sequence features, and the density of mapped ChIP-seq peaks across TF-bound loci correlates with sequence features and the expression level of flanking genes. Based on the affinities to bind to promoters and enhancers we detected five distinct clusters of TFs that form the core of the HOT loci. We report an abundance of HOT loci in the human genome and a commitment of 51% of all TF ChIP-seq binding events to HOT locus formation thus challenging the classical model of enhancer activity and propose a model of HOT locus formation based on the existence of large transcriptional condensates.