scRNA-sequencing in chick suggests a probabilistic model for cell fate allocation at the neural plate border
Abstract
The vertebrate 'neural plate border' is a transient territory located at the edge of the neural plate containing precursors for all ectodermal derivatives: the neural plate, neural crest, placodes and epidermis. Elegant functional experiments in a range of vertebrate models have provided an in-depth understanding of gene regulatory interactions within the ectoderm. However, these experiments conducted at tissue level raise seemingly contradictory models for fate allocation of individual cells. Here, we carry out single cell RNA sequencing of chick ectoderm from primitive streak to neurulation stage, to explore cell state diversity and heterogeneity. We characterise the dynamics of gene modules, allowing us to model the order of molecular events which take place as ectodermal fates segregate. Furthermore, we find that genes previously classified as neural plate border 'specifiers' typically exhibit dynamic expression patterns and are enriched in either neural, neural crest or placodal fates, revealing that the neural plate border should be seen as a heterogeneous ectodermal territory and not a discrete transitional transcriptional state. Analysis of neural, neural crest and placodal markers reveals that individual NPB cells co-express competing transcriptional programmes suggesting that their ultimate identify is not yet fixed. This population of 'border located undecided progenitors' (BLUPs) gradually diminishes as cell fate decisions take place. Considering our findings, we propose a probabilistic model for cell fate choice at the neural plate border. Our data suggest that the probability of a progenitor's daughters to contribute to a given ectodermal derivative is related to the balance of competing transcriptional programmes, which in turn are regulated by the spatiotemporal position of a progenitor.
Data availability
10x single cell RNAseq was carried out in two batches and is available under two separate accession numbers (ArrayExpress: E-MTAB-10408 and E-MTAB-1144). Our NGS alignments and downstream analysis have been wrapped into custom Nextflow pipelines allowing for full reproducibility. For the code used in this analysis, including links to our Docker containers, see our GitHub repository at https://github.com/alexthiery/10x_neural_plate_border. Finally, we have developed a user friendly ShinyApp to allow public exploration of our single cell RNAseq data at https://shiny.crick.ac.uk/thiery_neural_plate_border/.
Article and author information
Author details
Funding
Biotechnology and Biological Sciences Research Council (BB/S005536/1)
- Alexandre P Thiery
- Ailin Leticia Buzzi
- Andrea Streit
Biotechnology and Biological Sciences Research Council (BB/R006342/1)
- Alexandre P Thiery
- Ailin Leticia Buzzi
- Andrea Streit
Wellcome Trust (108874/B/15/Z)
- Nicholas M Luscombe
Wellcome Trust (FC001051)
- Chris Cheshire
- Nicholas M Luscombe
- James Briscoe
Cancer Research UK (FC001051)
- Chris Cheshire
- Nicholas M Luscombe
- James Briscoe
Medical Research Council (FC001051)
- Chris Cheshire
- Nicholas M Luscombe
- James Briscoe
Wellcome Trust (108874/Z/15/Z)
- Eva Hamrud
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2023, Thiery et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,766
- views
-
- 311
- downloads
-
- 10
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Developmental Biology
Congenital malformations can originate from numerous genetic or non-genetic factors but in most cases the causes are unknown. Genetic disruption of nicotinamide adenine dinucleotide (NAD) de novo synthesis causes multiple malformations, collectively termed Congenital NAD Deficiency Disorder (CNDD), highlighting the necessity of this pathway during embryogenesis. Previous work in mice shows that NAD deficiency perturbs embryonic development specifically when organs are forming. While the pathway is predominantly active in the liver postnatally, the site of activity prior to and during organogenesis is unknown. Here, we used a mouse model of human CNDD and assessed pathway functionality in embryonic livers and extraembryonic tissues via gene expression, enzyme activity and metabolic analyses. We found that the extra-embryonic visceral yolk sac endoderm exclusively synthesises NAD de novo during early organogenesis before the embryonic liver takes over this function. Under CNDD-inducing conditions, visceral yolk sacs had reduced NAD levels and altered NAD-related metabolic profiles, affecting embryo metabolism. Expression of requisite pathway genes is conserved in the equivalent yolk sac cell type in humans. Our findings show that visceral yolk sac-mediated NAD de novo synthesis activity is essential for mouse embryogenesis and its perturbation causes CNDD. As mouse and human yolk sacs are functionally homologous, our data improve the understanding of human congenital malformation causation.
-
- Developmental Biology
- Stem Cells and Regenerative Medicine
The purpose of these studies is to investigate how Sphingosine-1-phosphate (S1P) signaling regulates glial phenotype, dedifferentiation of Müller glia (MG), reprogramming into proliferating MG-derived progenitor cells (MGPCs), and neuronal differentiation of the progeny of MGPCs in the chick retina. We found that S1P-related genes are highly expressed by retinal neurons and glia, and levels of expression were dynamically regulated following retinal damage. Drug treatments that activate S1P receptor 1 (S1PR1) or increase levels of S1P suppressed the formation of MGPCs. Conversely, treatments that inhibit S1PR1 or decrease levels of S1P stimulated the formation of MGPCs. Inhibition of S1P receptors or S1P synthesis significantly enhanced the neuronal differentiation of the progeny of MGPCs. We report that S1P-related gene expression in MG is modulated by microglia and inhibition of S1P receptors or S1P synthesis partially rescues the loss of MGPC formation in damaged retinas missing microglia. Finally, we show that TGFβ/Smad3 signaling in the resting retina maintains S1PR1 expression in MG. We conclude that the S1P signaling is dynamically regulated in MG and MGPCs in the chick retina, and activation of S1P signaling depends, in part, on signals produced by reactive microglia.