scRNA-sequencing in chick suggests a probabilistic model for cell fate allocation at the neural plate border

  1. Alexandre P Thiery
  2. Ailin Leticia Buzzi
  3. Eva Hamrud
  4. Chris Cheshire
  5. Nicholas M Luscombe
  6. James Briscoe
  7. Andrea Streit  Is a corresponding author
  1. King's College London, United Kingdom
  2. The Francis Crick Institute, United Kingdom

Abstract

The vertebrate 'neural plate border' is a transient territory located at the edge of the neural plate containing precursors for all ectodermal derivatives: the neural plate, neural crest, placodes and epidermis. Elegant functional experiments in a range of vertebrate models have provided an in-depth understanding of gene regulatory interactions within the ectoderm. However, these experiments conducted at tissue level raise seemingly contradictory models for fate allocation of individual cells. Here, we carry out single cell RNA sequencing of chick ectoderm from primitive streak to neurulation stage, to explore cell state diversity and heterogeneity. We characterise the dynamics of gene modules, allowing us to model the order of molecular events which take place as ectodermal fates segregate. Furthermore, we find that genes previously classified as neural plate border 'specifiers' typically exhibit dynamic expression patterns and are enriched in either neural, neural crest or placodal fates, revealing that the neural plate border should be seen as a heterogeneous ectodermal territory and not a discrete transitional transcriptional state. Analysis of neural, neural crest and placodal markers reveals that individual NPB cells co-express competing transcriptional programmes suggesting that their ultimate identify is not yet fixed. This population of 'border located undecided progenitors' (BLUPs) gradually diminishes as cell fate decisions take place. Considering our findings, we propose a probabilistic model for cell fate choice at the neural plate border. Our data suggest that the probability of a progenitor's daughters to contribute to a given ectodermal derivative is related to the balance of competing transcriptional programmes, which in turn are regulated by the spatiotemporal position of a progenitor.

Data availability

10x single cell RNAseq was carried out in two batches and is available under two separate accession numbers (ArrayExpress: E-MTAB-10408 and E-MTAB-1144). Our NGS alignments and downstream analysis have been wrapped into custom Nextflow pipelines allowing for full reproducibility. For the code used in this analysis, including links to our Docker containers, see our GitHub repository at https://github.com/alexthiery/10x_neural_plate_border. Finally, we have developed a user friendly ShinyApp to allow public exploration of our single cell RNAseq data at https://shiny.crick.ac.uk/thiery_neural_plate_border/.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Alexandre P Thiery

    Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Ailin Leticia Buzzi

    Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Eva Hamrud

    Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Chris Cheshire

    Bioinformatics and Computational Biology Laboratory, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Nicholas M Luscombe

    Bioinformatics and Computational Biology Laboratory, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. James Briscoe

    Bioinformatics and Computational Biology Laboratory, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1020-5240
  7. Andrea Streit

    Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
    For correspondence
    andrea.streit@kcl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7664-7917

Funding

Biotechnology and Biological Sciences Research Council (BB/S005536/1)

  • Alexandre P Thiery
  • Ailin Leticia Buzzi
  • Andrea Streit

Biotechnology and Biological Sciences Research Council (BB/R006342/1)

  • Alexandre P Thiery
  • Ailin Leticia Buzzi
  • Andrea Streit

Wellcome Trust (108874/B/15/Z)

  • Nicholas M Luscombe

Wellcome Trust (FC001051)

  • Chris Cheshire
  • Nicholas M Luscombe
  • James Briscoe

Cancer Research UK (FC001051)

  • Chris Cheshire
  • Nicholas M Luscombe
  • James Briscoe

Medical Research Council (FC001051)

  • Chris Cheshire
  • Nicholas M Luscombe
  • James Briscoe

Wellcome Trust (108874/Z/15/Z)

  • Eva Hamrud

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Thiery et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,902
    views
  • 330
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alexandre P Thiery
  2. Ailin Leticia Buzzi
  3. Eva Hamrud
  4. Chris Cheshire
  5. Nicholas M Luscombe
  6. James Briscoe
  7. Andrea Streit
(2023)
scRNA-sequencing in chick suggests a probabilistic model for cell fate allocation at the neural plate border
eLife 12:e82717.
https://doi.org/10.7554/eLife.82717

Share this article

https://doi.org/10.7554/eLife.82717

Further reading

    1. Cancer Biology
    2. Developmental Biology
    Sara Jaber, Eliana Eldawra ... Franck Toledo
    Research Article

    Missense ‘hotspot’ mutations localized in six p53 codons account for 20% of TP53 mutations in human cancers. Hotspot p53 mutants have lost the tumor suppressive functions of the wildtype protein, but whether and how they may gain additional functions promoting tumorigenesis remain controversial. Here, we generated Trp53Y217C, a mouse model of the human hotspot mutant TP53Y220C. DNA damage responses were lost in Trp53Y217C/Y217C (Trp53YC/YC) cells, and Trp53YC/YC fibroblasts exhibited increased chromosome instability compared to Trp53-/- cells. Furthermore, Trp53YC/YC male mice died earlier than Trp53-/- males, with more aggressive thymic lymphomas. This correlated with an increased expression of inflammation-related genes in Trp53YC/YC thymic cells compared to Trp53-/- cells. Surprisingly, we recovered only one Trp53YC/YC female for 22 Trp53YC/YC males at weaning, a skewed distribution explained by a high frequency of Trp53YC/YC female embryos with exencephaly and the death of most Trp53YC/YC female neonates. Strikingly, however, when we treated pregnant females with the anti-inflammatory drug supformin (LCC-12), we observed a fivefold increase in the proportion of viable Trp53YC/YC weaned females in their progeny. Together, these data suggest that the p53Y217C mutation not only abrogates wildtype p53 functions but also promotes inflammation, with oncogenic effects in males and teratogenic effects in females.

    1. Developmental Biology
    Mengjie Li, Aiguo Tian, Jin Jiang
    Research Advance

    Stem cell self-renewal often relies on asymmetric fate determination governed by niche signals and/or cell-intrinsic factors but how these regulatory mechanisms cooperate to promote asymmetric fate decision remains poorly understood. In adult Drosophila midgut, asymmetric Notch (N) signaling inhibits intestinal stem cell (ISC) self-renewal by promoting ISC differentiation into enteroblast (EB). We have previously shown that epithelium-derived Bone Morphogenetic Protein (BMP) promotes ISC self-renewal by antagonizing N pathway activity (Tian and Jiang, 2014). Here, we show that loss of BMP signaling results in ectopic N pathway activity even when the N ligand Delta (Dl) is depleted, and that the N inhibitor Numb acts in parallel with BMP signaling to ensure a robust ISC self-renewal program. Although Numb is asymmetrically segregated in about 80% of dividing ISCs, its activity is largely dispensable for ISC fate determination under normal homeostasis. However, Numb becomes crucial for ISC self-renewal when BMP signaling is compromised. Whereas neither Mad RNA interference nor its hypomorphic mutation led to ISC loss, inactivation of Numb in these backgrounds resulted in stem cell loss due to precocious ISC-to-EB differentiation. Furthermore, we find that numb mutations resulted in stem cell loss during midgut regeneration in response to epithelial damage that causes fluctuation in BMP pathway activity, suggesting that the asymmetrical segregation of Numb into the future ISC may provide a fail-save mechanism for ISC self-renewal by offsetting BMP pathway fluctuation, which is important for ISC maintenance in regenerative guts.