Cellular and molecular dynamics in the lungs of neonatal and juvenile mice in response to E. coli

  1. Sharon A McGrath-Morrow  Is a corresponding author
  2. Jarrett Venezia
  3. Roland Ndeh
  4. Nigel Michki
  5. Javier Perez
  6. Benjamin David Singer
  7. Raffaello Cimbro
  8. Mark Soloski
  9. Alan L Scott
  1. Children's Hospital of Philadelphia Division of Pulmonary Medicine and Sleep, United States
  2. W Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, United States
  3. Division of Pulmonary and Critical Care Medicine, Department of Medicine Northwestern, University Feinberg School of Medicine, United States
  4. Department of Medicine, Division of Rheumatology, Johns Hopkins University, School of Medicine, United States
6 figures, 1 table and 1 additional file

Figures

Figure 1 with 2 supplements
E. coli-induced changes in neutrophil and lymphocyte dynamics in neonatal and juvenile lungs.

Changes in the dynamics of Ly6g+ neutrophils, CD4+ T cells, B220+ B cells, and γδ+ T cells in neonatal and juvenile lungs at 24, 48, or 72 hr, post-E. coli challenge (PEC) as assessed by flow cytometry (see Figure 3—figure supplement 1 for gating) and expressed as the percentage of total CD45+ cells. Statistical differences were determined using two-way analysis of variance (ANOVA) with multiple comparisons. Error bars represent standard deviation of the mean. ns – not significant; *p < 0.05; **p < 0.005; ***p = 0.0001; ****p < 0.0001 (n = 4 group).

Figure 1—figure supplement 1
Survival analysis of WT and MHCII−/− neonatal and juvenile mice after challenge with E. coli.

(A) Mortality of WT neonates and juveniles at 24, 48, and 72 hr post-E. coli challenge with 2.4 × 106 CFUs or phosphate-buffered saline (PBS) treatment. Comparison of survival curves were determined using log-rank (Mantel–Cox) test (n = 24–47/group). (B) Representative examples of the histological appearance of the lungs from WT neonates and juveniles at 48 hr post-E. coli challenge or control PBS treatment (arrows point to inflammatory foci). (C) Mortality of MHCII−/− neonates and juveniles at 24, 48, and 72 hr post-E. coli challenge with 2.4 × 106 CFUs or PBS treatment. Comparison of survival curves were determined using log-rank (Mantel–Cox) test (n = 12–37/group). (D) Representative examples of the histological appearance of the lungs from MHCII−/− neonates and juveniles at 48 hr post-E. coli challenge or control PBS treatment (arrows point to inflammatory foci).

Figure 1—figure supplement 2
Similar bacterial burden between neonatal and juvenile mice at Time0 post-E. coli aspiration.

(A) Optical density at 600 nM wavelengths (OD600) from E. coli and phosphate-buffered saline (PBS)-treated mice at T0. (B) Lungs weights of neonatal and juvenile post-E. coli or PBS aspiration at T0 (*p < 0.5, **p < 0.007). (C) OD600 absorbance normalized for lung weights (n = 4 for each condition).

Figure 2 with 1 supplement
E. coli-induced changes in mononuclear cell dynamics in neonatal and juvenile lungs.

Changes in the dynamics of CD11c+SiglecFF4/80MHCIIhi dendritic cells, CD11c+F4/80+SiglecF+ alveolar macrophages, CD11b+F4/80+SiglecF interstitial macrophages, and CD11b+Ly6c+MHCII+ monocytes in neonatal and juvenile lungs at 24, 48, or 72 hr, post-E. coli challenge (PEC) as assessed by flow cytometry (see Figure 3—figure supplement 1 for gating) and expressed as the percentage of total CD45+ cells. Statistical differences were determined using two-way analysis of variance (ANOVA) with multiple comparisons. Error bars represent standard deviation of the mean. ns – not significant; *p < 0.05; **p < 0.005; ***p = 0.0001; ****p < 0.0001 (n = 3 or 4/group).

Figure 2—figure supplement 1
E. coli-induced changes in the number of immune cells in lungs from neonatal mice.

Changes in the numbers of Ly6g+ neutrophils, CD4+ T cells, B220+ B cells, γδ+ T cells, CD11c+SiglecFF4/80MHCIIhi dendritic cells, CD11c+F4/80+SiglecF+ alveolar macrophages, CD11b+F4/80+SiglecF interstitial macrophages, and CD11b+Ly6c+MHCII+ monocytes in neonatal (PND 3–5) lungs at 24, 48, or 72 hr post-E. coli challenge (PEC) as assessed by flow cytometry (see Figure 1—figure supplement 1 for gating) and expressed as cell number (×103). Statistical differences were determined using two-way analysis of variance (ANOVA) with multiple comparisons. Error bars represent standard deviation of the mean. *p < 0.05; **p < 0.005; ***p = 0.0001; ****p < 0.0001 (n = 4/time point).

Figure 3 with 1 supplement
E. coli-induced changes in the surface phenotypes of alveolar macrophage and interstitial macrophage compartments.

(A) A representative flow cytometry analysis of F4/80+SiglecF+ alveolar macrophages from E. coli-challenged or phosphate-buffered saline (PBS)-treated neonatal and juvenile lungs at 24, 48, and 72 hr (see Figure 3—figure supplement 1 for gating). (B) A representative flow cytometry analysis of the CD11b+MHCII+Ly6cvariable interstitial macrophage compartment from E. coli-challenged or PBS-treated neonatal and juvenile lungs at 24, 48, and 72 hr (see Figure 3—figure supplement 1 for gating).

Figure 3—figure supplement 1
Gating strategy.

The gating strategy is illustrated using a juvenile 72 hr phosphate-buffered saline (PBS)-treated sample. Neutrophils were identified first among total CD45+ cells by Ly6g expression. Remaining cells were segregated by expression of CD11c or CD11b. Populations in the CD11c+ compartment include MHC-IIhi dendritic cells and F480+SiglecF+ alveolar macrophages. Cells within the CD11b+ compartment include two F480loSiglecF monocyte populations with variable MHC-II expression, and MHC-IIhiF480hiSiglecF interstitial macrophages.

E. coli-induced changes in the proportions of neutrophils, lymphocytes, and mononuclear cells in the lungs of MHC−/− neonates and juveniles at 48 hr post-challenge with E. coli.

Changes in neutrophils, CD4 T cells, B cells, γδT cells, dendritic cells, alveolar macrophages, interstitial macrophages, and monocytes in neonatal and juvenile lungs at 48 hr post-E. coli challenge (PEC) as assessed by flow cytometry (see Figure 3—figure supplement 1 for gating) and expressed as the percentage of total CD45+ cells. Statistical differences were determined using two-way analysis of variance (ANOVA) with multiple comparisons. Error bars represent standard deviation of the mean. ns – not significant; *p < 0.05; **p < 0.005; ***p = 0.0001; ****p < 0.0001 (n = 3 or 4/group).

E. coli-induced changes in the numbers of neutrophils, lymphocytes, and mononuclear cells in the lungs of WT and MHC−/− neonates and juveniles at 48 hr post-challenge with E. coli.

Changes in the numbers of total CD45+ cells, neutrophils, CD4 T cells, B cells, γδT cells, dendritic cells, alveolar macrophages, interstitial macrophages, and monocytes in neonatal and juvenile lungs at 48 hr post-E. coli challenge (PEC) as assessed by flow cytometry (see Figure 3—figure supplement 1 for gating). Statistical differences were determined using two-way analysis of variance (ANOVA) with Holm–Šídák post hoc test for multiple comparisons. Error bars represent standard deviation of the mean. ns – not significant; *p < 0.05; **p < 0.005; ***p = 0.0001; ****p < 0.0001 (n = 4–8/group).

E. coli-induced changes in the expression dynamics of select regulatory, cytokine, and chemokine genes in WT and MHC−/− neonatal and juvenile lungs.

Quantitative RT-PCR analysis of total RNA isolated from the lungs of WT and MHCII−/− neonates and juveniles at 24, 48, and 72 hr post-E. coli challenge for changes in expression of class II major histocompatibility complex, transactivator (Ciita), tumor necrosis factor (Tnf), interleukin 6 (Il6), C-X-C motif chemokine ligand 10 (Cxcl10), C-C motif chemokine ligand 4 (Ccl4), C-C motif chemokine ligand 2 (Ccl2), C-C motif chemokine ligand 20 (Ccl20), and C-X-C motif chemokine ligand 1 (Cxcl1). Data present as fold change over the value for the corresponding age/genetic background phosphate-buffered saline (PBS) controls. Points represent means of the values from 3 to 5 animals per group (error bars represent standard error of the mean). Statistical significance between groups were determined using one-way analysis of variance (ANOVA) with multiple comparisons. *p < 0.01, **p < 0.004, ***p < 0.001.

Tables

Key resources table
Reagent type (species) or resourceDesignationSource or referenceIdentifiersAdditional information
Strain, strain background (Mus musculus)B6;129S2-H2dlAb1-Ea/JJackson LaboratoryStrain #003584
AntibodyB220/AF488
(Rat monoclonal)
BiolegendCat# 103228IgG2a (clone RA3-6B2) used at 1/100
AntibodyCD25/PE
(Rat polyclonal)
BDCat# 561065IgG1 used at 1/50
AntibodyCD64/PEcy7
(Mouse monoclonal)
BiolegendCat# 139314X54-5/7 used at 1/100
AntibodyCD11b/PE-CF594
(Rat monoclonal)
BDCat# 562317M1/70 IgG2b used at 1/50
AntibodyCD4/BB700
(Rat monoclonal)
BDCat# 566408RM4-5 IgG2a used at 1/50
AntibodyCD11c/APC-R700
(Hamster monoclonal)
BDCat# 565872N418 IgG2 used at 1/40
AntibodyPD-1/APC-AF647
(Rat monoclonal)
BiolegendCat# 13520929F-1A12 IgG2a used at 1/30
AntibodyMHCII/APC-Cy7
(Rat monoclonal)
BiolegendCat# 107627M5/114.15.2 IgG2b used at 1/50
AntibodySigF/BV421
(Rat monoclonal)
BDCat# 562681E50-2440 IgG2a used at 1/50
AntibodyLy6G/BV510
(Rat monoclonal)
BDCat# 7401571A8 IgG2a used at 1/50
AntibodyLy6C/BV605
(Rat monoclonal)
BDCat# 128036HK1.4 IgG2c used at 1/100
AntibodyF4/80/BV650
(Rat monoclonal)
BDCat# 743282T45.2342 IgG2a used at 1/20
AntibodyCD3/BV711
(Hamster monoclonal)
BDCat# 563123145-2C11 IgG1 used at 1/40
AntibodyITCRgd/BV786/SB780
(Hamster monoclonal)
InvitrogenCat# 78-5711-82GL3 IgG used at 1/30
AntibodyCd45/BUV395
(Rat monoclonal)
BDCat# 56427930-F11 IgG2b used at 1/50
AntibodyCD8/BUV737
(Rat monoclonal)
BDCat# 5642975306.7 IgG2a used at 1/40

Additional files

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sharon A McGrath-Morrow
  2. Jarrett Venezia
  3. Roland Ndeh
  4. Nigel Michki
  5. Javier Perez
  6. Benjamin David Singer
  7. Raffaello Cimbro
  8. Mark Soloski
  9. Alan L Scott
(2023)
Cellular and molecular dynamics in the lungs of neonatal and juvenile mice in response to E. coli
eLife 12:e82933.
https://doi.org/10.7554/eLife.82933