Proteome-wide systems genetics identifies UFMylation as a regulator of skeletal muscle function

  1. Jeffrey Molendijk
  2. Ronnie Blazev
  3. Richard J Mills
  4. Yaan-Kit Ng
  5. Kevin I Watt
  6. Daryn Chau
  7. Paul Gregorevic
  8. Peter J Crouch
  9. James BW Hilton
  10. Leszek Lisowski
  11. Peixiang Zhang
  12. Karen Reue
  13. Aldons J Lusis
  14. James Hudson
  15. David E James
  16. Marcus M Seldin
  17. Benjamin L Parker  Is a corresponding author
  1. University of Melbourne, Australia
  2. QIMR Berghofer Medical Research Institute, Australia
  3. University of California, Irvine, United States
  4. University of Sydney, Australia
  5. University of California, Los Angeles, United States

Abstract

Improving muscle function has great potential to improve the quality of life. To identify novel regulators of skeletal muscle metabolism and function, we performed a proteomic analysis of gastrocnemius muscle from 73 genetically distinct inbred mouse strains, and integrated the data with previously acquired genomics and >300 molecular/phenotypic traits via quantitative trait loci mapping and correlation network analysis. These data identified thousands of associations between protein abundance and phenotypes and can be accessed online (https://muscle.coffeeprot.com/) to identify regulators of muscle function. We used this resource to prioritize targets for a functional genomic screen in human bioengineered skeletal muscle. This identified several negative regulators of muscle function including UFC1, an E2 ligase for protein UFMylation. We show UFMylation is up-regulated in a mouse model of amyotrophic lateral sclerosis, a disease that involves muscle atrophy. Furthermore, in vivo knockdown of UFMylation increased contraction force, implicating its role as a negative regulator of skeletal muscle function.

Data availability

The proteomics data generated in this study are deposited to the ProteomeXchange Consortium via the PRIDE (Perez-Riverol et al., 2019) under the identifiers PXD032729, PXD034913 and PXD035170. The code used for downstream analysis of proteomic data can be found at: https://github.com/JeffreyMolendijk/skeletal_muscle.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Jeffrey Molendijk

    Department of Anatomy and Physiology, University of Melbourne, Melbourne, Australia
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6575-504X
  2. Ronnie Blazev

    Department of Anatomy and Physiology, University of Melbourne, Melbourne, Australia
    Competing interests
    No competing interests declared.
  3. Richard J Mills

    QIMR Berghofer Medical Research Institute, Brisbane, Australia
    Competing interests
    No competing interests declared.
  4. Yaan-Kit Ng

    Department of Anatomy and Physiology, University of Melbourne, Melbourne, Australia
    Competing interests
    No competing interests declared.
  5. Kevin I Watt

    Department of Anatomy and Physiology, University of Melbourne, Melbourne, Australia
    Competing interests
    No competing interests declared.
  6. Daryn Chau

    Department of Biological Chemistry, University of California, Irvine, Irvine, United States
    Competing interests
    No competing interests declared.
  7. Paul Gregorevic

    Department of Anatomy and Physiology, University of Melbourne, Melbourne, Australia
    Competing interests
    No competing interests declared.
  8. Peter J Crouch

    Department of Anatomy and Physiology, University of Melbourne, Melbourne, Australia
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7777-4747
  9. James BW Hilton

    Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, Australia
    Competing interests
    No competing interests declared.
  10. Leszek Lisowski

    Children's Medical Research Institute, University of Sydney, Sydney, Australia
    Competing interests
    No competing interests declared.
  11. Peixiang Zhang

    Department of Human Genetics/Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  12. Karen Reue

    Department of Human Genetics/Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  13. Aldons J Lusis

    Department of Human Genetics/Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  14. James Hudson

    QIMR Berghofer Medical Research Institute, Brisbane, Australia
    Competing interests
    No competing interests declared.
  15. David E James

    School of Life and Environmental Science, University of Sydney, Sydney, Australia
    Competing interests
    David E James, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5946-5257
  16. Marcus M Seldin

    Department of Biological Chemistry, University of California, Irvine, Irvine, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8026-4759
  17. Benjamin L Parker

    Department of Anatomy and Physiology, University of Melbourne, Melbourne, Australia
    For correspondence
    ben.parker@unimelb.edu.au
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1818-2183

Funding

National Health and Medical Research Council (APP1184363)

  • Karen Reue
  • Marcus M Seldin
  • Benjamin L Parker

National Institute of Health (HL147883)

  • Aldons J Lusis

National Institute of Health (DK117850)

  • Aldons J Lusis

Weary Dunlop Foundation (NA)

  • Benjamin L Parker

The ALS Association (21-DDC-574)

  • Paul Gregorevic
  • Peter J Crouch

National Health and Medical Research Council (APP2009642)

  • Benjamin L Parker

National Health and Medical Research Council (APP2013189)

  • Richard J Mills

National Health and Medical Research Council (APP1156562)

  • Paul Gregorevic
  • Benjamin L Parker

National Institute of Health (HL138193)

  • Marcus M Seldin

National Institute of Health (DK130640)

  • Marcus M Seldin

National Institute of Health (DK097771)

  • Marcus M Seldin

National Institute of Health (GM115318)

  • Karen Reue

National Institute of Health (AG070959)

  • Aldons J Lusis

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All rAAV6 intramuscular injection mouse experiments were approved by The University of Melbourne Animal Ethics Committee (AEC ID1914940) and conformed to the National Health and Medical Research Council of Australia guidelines regarding the care and use of experimental animals. All studies involving the use of SOD1G37R mice and non-transgenic littermates were approved by a University of Melbourne Animal Experimentation Ethics Committee (approval #2015124) and conformed with guidelines of the Australian National Health and Medical Research Council.

Copyright

© 2022, Molendijk et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,674
    views
  • 239
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jeffrey Molendijk
  2. Ronnie Blazev
  3. Richard J Mills
  4. Yaan-Kit Ng
  5. Kevin I Watt
  6. Daryn Chau
  7. Paul Gregorevic
  8. Peter J Crouch
  9. James BW Hilton
  10. Leszek Lisowski
  11. Peixiang Zhang
  12. Karen Reue
  13. Aldons J Lusis
  14. James Hudson
  15. David E James
  16. Marcus M Seldin
  17. Benjamin L Parker
(2022)
Proteome-wide systems genetics identifies UFMylation as a regulator of skeletal muscle function
eLife 11:e82951.
https://doi.org/10.7554/eLife.82951

Share this article

https://doi.org/10.7554/eLife.82951

Further reading

    1. Computational and Systems Biology
    2. Microbiology and Infectious Disease
    Gaetan De Waele, Gerben Menschaert, Willem Waegeman
    Research Article

    Timely and effective use of antimicrobial drugs can improve patient outcomes, as well as help safeguard against resistance development. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is currently routinely used in clinical diagnostics for rapid species identification. Mining additional data from said spectra in the form of antimicrobial resistance (AMR) profiles is, therefore, highly promising. Such AMR profiles could serve as a drop-in solution for drastically improving treatment efficiency, effectiveness, and costs. This study endeavors to develop the first machine learning models capable of predicting AMR profiles for the whole repertoire of species and drugs encountered in clinical microbiology. The resulting models can be interpreted as drug recommender systems for infectious diseases. We find that our dual-branch method delivers considerably higher performance compared to previous approaches. In addition, experiments show that the models can be efficiently fine-tuned to data from other clinical laboratories. MALDI-TOF-based AMR recommender systems can, hence, greatly extend the value of MALDI-TOF MS for clinical diagnostics. All code supporting this study is distributed on PyPI and is packaged at https://github.com/gdewael/maldi-nn.

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Sanjarbek Hudaiberdiev, Ivan Ovcharenko
    Research Article

    Enhancers and promoters are classically considered to be bound by a small set of transcription factors (TFs) in a sequence-specific manner. This assumption has come under increasing skepticism as the datasets of ChIP-seq assays of TFs have expanded. In particular, high-occupancy target (HOT) loci attract hundreds of TFs with often no detectable correlation between ChIP-seq peaks and DNA-binding motif presence. Here, we used a set of 1003 TF ChIP-seq datasets (HepG2, K562, H1) to analyze the patterns of ChIP-seq peak co-occurrence in combination with functional genomics datasets. We identified 43,891 HOT loci forming at the promoter (53%) and enhancer (47%) regions. HOT promoters regulate housekeeping genes, whereas HOT enhancers are involved in tissue-specific process regulation. HOT loci form the foundation of human super-enhancers and evolve under strong negative selection, with some of these loci being located in ultraconserved regions. Sequence-based classification analysis of HOT loci suggested that their formation is driven by the sequence features, and the density of mapped ChIP-seq peaks across TF-bound loci correlates with sequence features and the expression level of flanking genes. Based on the affinities to bind to promoters and enhancers we detected five distinct clusters of TFs that form the core of the HOT loci. We report an abundance of HOT loci in the human genome and a commitment of 51% of all TF ChIP-seq binding events to HOT locus formation thus challenging the classical model of enhancer activity and propose a model of HOT locus formation based on the existence of large transcriptional condensates.