Proteomic characteristics reveal the signatures and the risks of T1 colorectal cancer metastasis to lymph nodes

  1. Aojia Zhuang
  2. Aobo Zhuang
  3. Yijiao Chen
  4. Zhaoyu Qin
  5. Dexiang Zhu
  6. Li Ren
  7. Ye Wei
  8. Pengyang Zhou
  9. Xuetong Yue
  10. Fuchu He  Is a corresponding author
  11. Jianming Xu  Is a corresponding author
  12. Chen Ding  Is a corresponding author
  1. Fudan University, China
  2. National Center for Protein Sciences, China

Abstract

The presence of lymph node metastasis (LNM) affects treatment strategy decisions in T1NxM0 colorectal cancer (CRC), but the currently used clinicopathological-based risk stratification cannot predict LNM accurately. In this study, we detected proteins in formalin-fixed paraffin-embedded (FFPE) tumor samples from 143 LNM-negative and 78 LNM-positive patients with T1 CRC and revealed changes in molecular and biological pathways by label-free liquid chromatography tandem mass spectrometry (LC-MS/MS) and established classifiers for predicting LNM in T1 CRC. An effective 55-proteins prediction model was built by machine learning and validated in a training cohort (N=132) and two validation cohorts (VC1, N=42; VC2, N=47), achieved an impressive AUC of 1.00 in the training cohort, 0.96 in VC1 and 0.93 in VC2, respectively. We further built a simplified classifier with 9 proteins, and achieved an AUC of 0.824. The simplified classifier was performed excellent in two external validation cohorts. The expression patterns of 13 proteins were confirmed by immunohistochemistry, and the IHC score of 5 proteins were used to build a IHC predict model with an AUC of 0.825. RHOT2 silence significantly enhanced migration and invasion of colon cancer cells. Our study explored the mechanism of metastasis in T1 CRC and can be used to facilitate the individualized prediction of LNM in patients with T1 CRC, which may provide a guidance for clinical practice in T1 CRC.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting file; Source Data files have been provided for all figures. The proteome raw data that support the findings of this study have been deposited to the ProteomeXchange Consortium (dataset identifier: PXD041476, https://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD041476) via the iProX partner repository (https://www.iprox.cn/) under Project ID IPX0003019000 at https://www.iprox.cn/page/project.html?id=IPX0003019000.

The following data sets were generated

Article and author information

Author details

  1. Aojia Zhuang

    School of Life Sciences, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Aobo Zhuang

    School of Life Sciences, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Yijiao Chen

    School of Life Sciences, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Zhaoyu Qin

    School of Life Sciences, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Dexiang Zhu

    School of Life Sciences, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Li Ren

    School of Life Sciences, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Ye Wei

    School of Life Sciences, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Pengyang Zhou

    School of Life Sciences, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Xuetong Yue

    School of Life Sciences, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Fuchu He

    China State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing, China
    For correspondence
    hefc@nic.bmi.ac.cn
    Competing interests
    The authors declare that no competing interests exist.
  11. Jianming Xu

    School of Life Sciences, Fudan University, Shanghai, China
    For correspondence
    xujmin@aliyun.com
    Competing interests
    The authors declare that no competing interests exist.
  12. Chen Ding

    School of Life Sciences, Fudan University, Shanghai, China
    For correspondence
    chend@fudan.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8673-3464

Funding

National Key Research and Development Program of China

  • Chen Ding

Clinical Research Plan of SHDC

  • Jianming Xu

Program of Shanghai Academic Research Leader

  • Chen Ding

Shuguang Program og Shanghai Education Development Foundation and Shanghai Municipal Education Commission

  • Chen Ding

National Natural Science Foundation of China

  • Chen Ding

the Major Project of Special Development Funds of Zhangjiang National Independent Innovation Demonstration Zone

  • Chen Ding

Shanghai Municipal Science and Technology Major Project

  • Chen Ding

the Fudan original research personalized support project

  • Chen Ding

CAMS Innovation Fund for Medical Sciences

  • Fuchu He

Shanghai Science and Technology Committee Project

  • Jianming Xu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The present study was carried out comply with the ethical standards of Helsinki Declaration II and approved by the Institution Review Board of Fudan University Zhongshan Hospital (B2019-166).

Copyright

© 2023, Zhuang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 945
    views
  • 201
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Aojia Zhuang
  2. Aobo Zhuang
  3. Yijiao Chen
  4. Zhaoyu Qin
  5. Dexiang Zhu
  6. Li Ren
  7. Ye Wei
  8. Pengyang Zhou
  9. Xuetong Yue
  10. Fuchu He
  11. Jianming Xu
  12. Chen Ding
(2023)
Proteomic characteristics reveal the signatures and the risks of T1 colorectal cancer metastasis to lymph nodes
eLife 12:e82959.
https://doi.org/10.7554/eLife.82959

Share this article

https://doi.org/10.7554/eLife.82959

Further reading

    1. Cancer Biology
    2. Cell Biology
    Zijing Wang, Bihan Xia ... Jilin Yang
    Research Article

    Bestrophin isoform 4 (BEST4) is a newly identified subtype of the calcium-activated chloride channel family. Analysis of colonic epithelial cell diversity by single-cell RNA-sequencing has revealed the existence of a cluster of BEST4+ mature colonocytes in humans. However, if the role of BEST4 is involved in regulating tumour progression remains largely unknown. In this study, we demonstrate that BEST4 overexpression attenuates cell proliferation, colony formation, and mobility in colorectal cancer (CRC) in vitro, and impedes the tumour growth and the liver metastasis in vivo. BEST4 is co-expressed with hairy/enhancer of split 4 (HES4) in the nucleus of cells, and HES4 signals BEST4 by interacting with the upstream region of the BEST4 promoter. BEST4 is epistatic to HES4 and downregulates TWIST1, thereby inhibiting epithelial-to-mesenchymal transition (EMT) in CRC. Conversely, knockout of BEST4 using CRISPR/Cas9 in CRC cells revitalises tumour growth and induces EMT. Furthermore, the low level of the BEST4 mRNA is correlated with advanced and the worse prognosis, suggesting its potential role involving CRC progression.

    1. Cancer Biology
    Bruno Bockorny, Lakshmi Muthuswamy ... Senthil K Muthuswamy
    Tools and Resources

    Pancreatic cancer has the worst prognosis of all common tumors. Earlier cancer diagnosis could increase survival rates and better assessment of metastatic disease could improve patient care. As such, there is an urgent need to develop biomarkers to diagnose this deadly malignancy. Analyzing circulating extracellular vesicles (cEVs) using ‘liquid biopsies’ offers an attractive approach to diagnose and monitor disease status. However, it is important to differentiate EV-associated proteins enriched in patients with pancreatic ductal adenocarcinoma (PDAC) from those with benign pancreatic diseases such as chronic pancreatitis and intraductal papillary mucinous neoplasm (IPMN). To meet this need, we combined the novel EVtrap method for highly efficient isolation of EVs from plasma and conducted proteomics analysis of samples from 124 individuals, including patients with PDAC, benign pancreatic diseases and controls. On average, 912 EV proteins were identified per 100 µL of plasma. EVs containing high levels of PDCD6IP, SERPINA12, and RUVBL2 were associated with PDAC compared to the benign diseases in both discovery and validation cohorts. EVs with PSMB4, RUVBL2, and ANKAR were associated with metastasis, and those with CRP, RALB, and CD55 correlated with poor clinical prognosis. Finally, we validated a seven EV protein PDAC signature against a background of benign pancreatic diseases that yielded an 89% prediction accuracy for the diagnosis of PDAC. To our knowledge, our study represents the largest proteomics profiling of circulating EVs ever conducted in pancreatic cancer and provides a valuable open-source atlas to the scientific community with a comprehensive catalogue of novel cEVs that may assist in the development of biomarkers and improve the outcomes of patients with PDAC.