Proteomic characteristics reveal the signatures and the risks of T1 colorectal cancer metastasis to lymph nodes

  1. Aojia Zhuang
  2. Aobo Zhuang
  3. Yijiao Chen
  4. Zhaoyu Qin
  5. Dexiang Zhu
  6. Li Ren
  7. Ye Wei
  8. Pengyang Zhou
  9. Xuetong Yue
  10. Fuchu He  Is a corresponding author
  11. Jianming Xu  Is a corresponding author
  12. Chen Ding  Is a corresponding author
  1. Fudan University, China
  2. National Center for Protein Sciences, China

Abstract

The presence of lymph node metastasis (LNM) affects treatment strategy decisions in T1NxM0 colorectal cancer (CRC), but the currently used clinicopathological-based risk stratification cannot predict LNM accurately. In this study, we detected proteins in formalin-fixed paraffin-embedded (FFPE) tumor samples from 143 LNM-negative and 78 LNM-positive patients with T1 CRC and revealed changes in molecular and biological pathways by label-free liquid chromatography tandem mass spectrometry (LC-MS/MS) and established classifiers for predicting LNM in T1 CRC. An effective 55-proteins prediction model was built by machine learning and validated in a training cohort (N=132) and two validation cohorts (VC1, N=42; VC2, N=47), achieved an impressive AUC of 1.00 in the training cohort, 0.96 in VC1 and 0.93 in VC2, respectively. We further built a simplified classifier with 9 proteins, and achieved an AUC of 0.824. The simplified classifier was performed excellent in two external validation cohorts. The expression patterns of 13 proteins were confirmed by immunohistochemistry, and the IHC score of 5 proteins were used to build a IHC predict model with an AUC of 0.825. RHOT2 silence significantly enhanced migration and invasion of colon cancer cells. Our study explored the mechanism of metastasis in T1 CRC and can be used to facilitate the individualized prediction of LNM in patients with T1 CRC, which may provide a guidance for clinical practice in T1 CRC.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting file; Source Data files have been provided for all figures. The proteome raw data that support the findings of this study have been deposited to the ProteomeXchange Consortium (dataset identifier: PXD041476, https://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD041476) via the iProX partner repository (https://www.iprox.cn/) under Project ID IPX0003019000 at https://www.iprox.cn/page/project.html?id=IPX0003019000.

The following data sets were generated

Article and author information

Author details

  1. Aojia Zhuang

    School of Life Sciences, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Aobo Zhuang

    School of Life Sciences, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Yijiao Chen

    School of Life Sciences, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Zhaoyu Qin

    School of Life Sciences, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Dexiang Zhu

    School of Life Sciences, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Li Ren

    School of Life Sciences, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Ye Wei

    School of Life Sciences, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Pengyang Zhou

    School of Life Sciences, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Xuetong Yue

    School of Life Sciences, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Fuchu He

    China State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing, China
    For correspondence
    hefc@nic.bmi.ac.cn
    Competing interests
    The authors declare that no competing interests exist.
  11. Jianming Xu

    School of Life Sciences, Fudan University, Shanghai, China
    For correspondence
    xujmin@aliyun.com
    Competing interests
    The authors declare that no competing interests exist.
  12. Chen Ding

    School of Life Sciences, Fudan University, Shanghai, China
    For correspondence
    chend@fudan.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8673-3464

Funding

National Key Research and Development Program of China

  • Chen Ding

Clinical Research Plan of SHDC

  • Jianming Xu

Program of Shanghai Academic Research Leader

  • Chen Ding

Shuguang Program og Shanghai Education Development Foundation and Shanghai Municipal Education Commission

  • Chen Ding

National Natural Science Foundation of China

  • Chen Ding

the Major Project of Special Development Funds of Zhangjiang National Independent Innovation Demonstration Zone

  • Chen Ding

Shanghai Municipal Science and Technology Major Project

  • Chen Ding

the Fudan original research personalized support project

  • Chen Ding

CAMS Innovation Fund for Medical Sciences

  • Fuchu He

Shanghai Science and Technology Committee Project

  • Jianming Xu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Aparna Parikh

Ethics

Human subjects: The present study was carried out comply with the ethical standards of Helsinki Declaration II and approved by the Institution Review Board of Fudan University Zhongshan Hospital (B2019-166).

Version history

  1. Received: August 24, 2022
  2. Preprint posted: September 23, 2022 (view preprint)
  3. Accepted: May 5, 2023
  4. Accepted Manuscript published: May 9, 2023 (version 1)
  5. Version of Record published: June 1, 2023 (version 2)

Copyright

© 2023, Zhuang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 847
    views
  • 187
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Aojia Zhuang
  2. Aobo Zhuang
  3. Yijiao Chen
  4. Zhaoyu Qin
  5. Dexiang Zhu
  6. Li Ren
  7. Ye Wei
  8. Pengyang Zhou
  9. Xuetong Yue
  10. Fuchu He
  11. Jianming Xu
  12. Chen Ding
(2023)
Proteomic characteristics reveal the signatures and the risks of T1 colorectal cancer metastasis to lymph nodes
eLife 12:e82959.
https://doi.org/10.7554/eLife.82959

Share this article

https://doi.org/10.7554/eLife.82959

Further reading

    1. Cancer Biology
    2. Cell Biology
    Camille Dantzer, Justine Vaché ... Violaine Moreau
    Research Article

    Immune checkpoint inhibitors have produced encouraging results in cancer patients. However, the majority of ß-catenin-mutated tumors have been described as lacking immune infiltrates and resistant to immunotherapy. The mechanisms by which oncogenic ß-catenin affects immune surveillance remain unclear. Herein, we highlighted the involvement of ß-catenin in the regulation of the exosomal pathway and, by extension, in immune/cancer cell communication in hepatocellular carcinoma (HCC). We showed that mutated ß-catenin represses expression of SDC4 and RAB27A, two main actors in exosome biogenesis, in both liver cancer cell lines and HCC patient samples. Using nanoparticle tracking analysis and live-cell imaging, we further demonstrated that activated ß-catenin represses exosome release. Then, we demonstrated in 3D spheroid models that activation of β-catenin promotes a decrease in immune cell infiltration through a defect in exosome secretion. Taken together, our results provide the first evidence that oncogenic ß-catenin plays a key role in exosome biogenesis. Our study gives new insight into the impact of ß-catenin mutations on tumor microenvironment remodeling, which could lead to the development of new strategies to enhance immunotherapeutic response.

    1. Cancer Biology
    Fang Huang, Zhenwei Dai ... Yang Wang
    Research Article

    Aberrant alternative splicing is well-known to be closely associated with tumorigenesis of various cancers. However, the intricate mechanisms underlying breast cancer metastasis driven by deregulated splicing events remain largely unexplored. Here, we unveiled that RBM7 is decreased in lymph node and distant organ metastases of breast cancer as compared to primary lesions and low expression of RBM7 is correlated with the reduced disease-free survival of breast cancer patients. Breast cancer cells with RBM7 depletion exhibited an increased potential for lung metastasis compared to scramble control cells. The absence of RBM7 stimulated breast cancer cell migration, invasion, and angiogenesis. Mechanistically, RBM7 controlled the splicing switch of MFGE8, favoring the production of the predominant isoform of MFGE8, MFGE8-L. This resulted in the attenuation of STAT1 phosphorylation and alterations in cell adhesion molecules. MFGE8-L exerted an inhibitory effect on the migratory and invasive capability of breast cancer cells, while the truncated isoform MFGE8-S, which lack the second F5/8 type C domain had the opposite effect. In addition, RBM7 negatively regulates the NF-κB cascade and an NF-κB inhibitor could obstruct the increase in HUVEC tube formation caused by RBM7 silencing. Clinically, we noticed a positive correlation between RBM7 expression and MFGE8 exon7 inclusion in breast cancer tissues, providing new mechanistic insights for molecular-targeted therapy in combating breast cancer.