Single-cell transcriptomic profiling of the zebrafish inner ear reveals molecularly distinct hair cell and supporting cell subtypes

  1. Tuo Shi
  2. Marielle O Beaulieu
  3. Lauren M Saunders
  4. Peter Fabian
  5. Cole Trapnell
  6. Neil Segil
  7. J Gage Crump  Is a corresponding author
  8. David W Raible  Is a corresponding author
  1. University of Southern California, United States
  2. University of Washington, United States

Abstract

A major cause of human deafness and vestibular dysfunction is permanent loss of the mechanosensory hair cells of the inner ear. In non-mammalian vertebrates such as zebrafish, regeneration of missing hair cells can occur throughout life. While a comparative approach has the potential to reveal the basis of such differential regenerative ability, the degree to which the inner ears of fish and mammals share common hair cells and supporting cell types remains unresolved. Here we perform single-cell RNA sequencing of the zebrafish inner ear at embryonic through adult stages to catalog the diversity of hair cells and non-sensory supporting cells. We identify a putative progenitor population for hair cells and supporting cells, as well as distinct hair and supporting cell types in the maculae versus cristae. The hair cell and supporting cell types differ from those described for the lateral line system, a distributed mechanosensory organ in zebrafish in which most studies of hair cell regeneration have been conducted. In the maculae, we identify two subtypes of hair cells that share gene expression with mammalian striolar or extrastriolar hair cells. In situ hybridization reveals that these hair cell subtypes occupy distinct spatial domains within the three macular organs, the utricle, saccule, and lagena, consistent with the reported distinct electrophysiological properties of hair cells within these domains. These findings suggest that primitive specialization of spatially distinct striolar and extrastriolar hair cells likely arose in the last common ancestor of fish and mammals. The similarities of inner ear cell type composition between fish and mammals validate zebrafish as a relevant model for understanding inner ear-specific hair cell function and regeneration.

Data availability

Sequencing data have been deposited in GEO under accession codes

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Tuo Shi

    Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5268-0146
  2. Marielle O Beaulieu

    Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Lauren M Saunders

    Department of Genomic Sciences, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4377-4252
  4. Peter Fabian

    Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Cole Trapnell

    Department of Genomic Sciences, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Neil Segil

    Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0441-2067
  7. J Gage Crump

    Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, United States
    For correspondence
    gcrump@med.usc.edu
    Competing interests
    The authors declare that no competing interests exist.
  8. David W Raible

    Department of Biological Structure, University of Washington, Seattle, United States
    For correspondence
    draible@uw.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5342-5841

Funding

National Institute on Deafness and Other Communication Disorders (R21DC019948)

  • David W Raible

National Institute of Dental and Craniofacial Research (R35DE027550)

  • J Gage Crump

National Institute on Deafness and Other Communication Disorders (R01DC015829)

  • Neil Segil

National Institute on Deafness and Other Communication Disorders (T32DC009975)

  • Tuo Shi
  • Neil Segil

National Institute on Deafness and Other Communication Disorders (T32DC005361)

  • Marielle O Beaulieu
  • David W Raible

National Institute on Deafness and Other Communication Disorders (F31DC020898)

  • Marielle O Beaulieu

Hamilton and Mildred Kellogg Trust

  • David W Raible

The Whitcraft Family Gift

  • David W Raible

Hearing Health Foundation

  • David W Raible

Paul G. Allen Frontiers Group (Allen Discovery Center for Cell Lineage Tracing)

  • Cole Trapnell

National Human Genome Research Institute (UM1HG011586)

  • Cole Trapnell

National Human Genome Research Institute (1R01HG010632)

  • Cole Trapnell

National Institute on Deafness and Other Communication Disorders (F31DC020633)

  • Tuo Shi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Lavinia Sheets, Washington University School of Medicine in St Louis, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The Institutional Animal Care and Use Committees of the University of Southern California (Protocol 20771) and University of Washington (Protocol 2997-01) approved all animal experiments.

Version history

  1. Received: August 25, 2022
  2. Preprint posted: September 10, 2022 (view preprint)
  3. Accepted: January 4, 2023
  4. Accepted Manuscript published: January 4, 2023 (version 1)
  5. Version of Record published: January 19, 2023 (version 2)

Copyright

© 2023, Shi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,525
    views
  • 469
    downloads
  • 59
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tuo Shi
  2. Marielle O Beaulieu
  3. Lauren M Saunders
  4. Peter Fabian
  5. Cole Trapnell
  6. Neil Segil
  7. J Gage Crump
  8. David W Raible
(2023)
Single-cell transcriptomic profiling of the zebrafish inner ear reveals molecularly distinct hair cell and supporting cell subtypes
eLife 12:e82978.
https://doi.org/10.7554/eLife.82978

Share this article

https://doi.org/10.7554/eLife.82978

Further reading

    1. Developmental Biology
    2. Medicine
    Stephen E Flaherty III, Olivier Bezy ... Zhidan Wu
    Research Article

    From a forward mutagenetic screen to discover mutations associated with obesity, we identified mutations in the Spag7 gene linked to metabolic dysfunction in mice. Here, we show that SPAG7 KO mice are born smaller and develop obesity and glucose intolerance in adulthood. This obesity does not stem from hyperphagia, but a decrease in energy expenditure. The KO animals also display reduced exercise tolerance and muscle function due to impaired mitochondrial function. Furthermore, SPAG7-deficiency in developing embryos leads to intrauterine growth restriction, brought on by placental insufficiency, likely due to abnormal development of the placental junctional zone. This insufficiency leads to loss of SPAG7-deficient fetuses in utero and reduced birth weights of those that survive. We hypothesize that a ‘thrifty phenotype’ is ingrained in SPAG7 KO animals during development that leads to adult obesity. Collectively, these results indicate that SPAG7 is essential for embryonic development and energy homeostasis later in life.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Nikola Sekulovski, Jenna C Wettstein ... Kenichiro Taniguchi
    Research Article

    Amniogenesis, a process critical for continuation of healthy pregnancy, is triggered in a collection of pluripotent epiblast cells as the human embryo implants. Previous studies have established that bone morphogenetic protein (BMP) signaling is a major driver of this lineage specifying process, but the downstream BMP-dependent transcriptional networks that lead to successful amniogenesis remain to be identified. This is, in part, due to the current lack of a robust and reproducible model system that enables mechanistic investigations exclusively into amniogenesis. Here, we developed an improved model of early amnion specification, using a human pluripotent stem cell-based platform in which the activation of BMP signaling is controlled and synchronous. Uniform amniogenesis is seen within 48 hr after BMP activation, and the resulting cells share transcriptomic characteristics with amnion cells of a gastrulating human embryo. Using detailed time-course transcriptomic analyses, we established a previously uncharacterized BMP-dependent amniotic transcriptional cascade, and identified markers that represent five distinct stages of amnion fate specification; the expression of selected markers was validated in early post-implantation macaque embryos. Moreover, a cohort of factors that could potentially control specific stages of amniogenesis was identified, including the transcription factor TFAP2A. Functionally, we determined that, once amniogenesis is triggered by the BMP pathway, TFAP2A controls the progression of amniogenesis. This work presents a temporally resolved transcriptomic resource for several previously uncharacterized amniogenesis states and demonstrates a critical intermediate role for TFAP2A during amnion fate specification.