Comparative genomics reveals insight into the evolutionary origin of massively scrambled genomes

  1. Yi Feng
  2. Rafik Neme
  3. Leslie Y Beh
  4. Xiao Chen
  5. Jasper Braun
  6. Michael W Lu
  7. Laura F Landweber  Is a corresponding author
  1. Columbia University, United States
  2. Universidad del Norte, Colombia
  3. Pacific Biosciences, United States
  4. University of South Florida, United States

Abstract

Ciliates are microbial eukaryotes that undergo extensive programmed genome rearrangement, a natural genome editing process that converts long germline chromosomes into smaller gene-rich somatic chromosomes. Three well-studied ciliates include Oxytricha trifallax, Tetrahymena thermophila and Paramecium tetraurelia, but only the Oxytricha lineage has a massively scrambled genome, whose assembly during development requires hundreds of thousands of precise programmed DNA joining events, representing the most complex genome dynamics of any known organism. Here we study the emergence of such complex genomes by examining the origin and evolution of discontinuous and scrambled genes in the Oxytricha lineage. This study compares six genomes from three species, the germline and somatic genomes for Euplotes woodruffi, Tetmemena sp., and the model ciliate Oxytricha trifallax. To complement existing data, we sequenced, assembled and annotated the germline and somatic genomes of Euplotes woodruffi, which provides an outgroup, and the germline genome of Tetmemena sp.. We find that the germline genome of Tetmemena is as massively scrambled and interrupted as Oxytricha's : 13.6% of its gene loci require programmed translocations and/or inversions, with some genes requiring hundreds of precise gene editing events during development. This study revealed that the earlier-diverged spirotrich, E. woodruffi, also has a scrambled genome, but only roughly half as many loci (7.3%) are scrambled. Furthermore, its scrambled genes are less complex, together supporting the position of Euplotes as a possible evolutionary intermediate in this lineage, in the process of accumulating complex evolutionary genome rearrangements, all of which require extensive repair to assemble functional coding regions. Comparative analysis also reveals that scrambled loci are often associated with local duplications, supporting a gradual model for the origin of complex, scrambled genomes via many small events of DNA duplication and decay.

Data availability

Custom scripts are public on https://github.com/yifeng-evo/Oxytricha_Tetmemena_Euplotes. DNA-seq reads and genome assemblies are available at GenBank under Bioprojects PRJNA694964 (Tetmemena sp.) and PRJNA781979 (Euplotes woodruffi). Genbank accession numbers for genomes are JAJKFJ000000000 (Tetmemena sp. Micronucleus genome), JAJLLS000000000 (Euplotes woodruffi Micronucleus genome), and JAJLLT000000000 (Euplotes woodruffi Macronucleus genome).Three replicates of RNA-seq reads for vegetative cells are available at GenBank under accession numbers of SRR21815378, SRR21815379, SRR21815380 for E. woodruffi and SRR21817702, SRR21817703 and SRR21817704 for Tetmemena sp..MDSs annotations for three species are available at https://doi.org/10.5061/dryad.5dv41ns96 and https://knot.math.usf.edu/mds_ies_db/2022/downloads.html (please select species from the drop-down menu).

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Yi Feng

    Department of Biological Sciences, Columbia University, New York, United States
    Competing interests
    No competing interests declared.
  2. Rafik Neme

    Department of Chemistry and Biology, Universidad del Norte, Barranquilla, Colombia
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8462-5291
  3. Leslie Y Beh

    Department of Biochemistry, Columbia University, New York, United States
    Competing interests
    Leslie Y Beh, The author is currently employed by Illumina.
  4. Xiao Chen

    Pacific Biosciences, Menlo Park, United States
    Competing interests
    Xiao Chen, employed by Pacific Biosciences.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1432-268X
  5. Jasper Braun

    Department of Mathematics and Statistics, University of South Florida, Tampa, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1250-4399
  6. Michael W Lu

    Department of Biochemistry, Columbia University, New York, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4926-8839
  7. Laura F Landweber

    Department of Biochemistry, Columbia University, New York, United States
    For correspondence
    Laura.Landweber@columbia.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7030-8540

Funding

National Institutes of Health (R35GM122555)

  • Yi Feng

National Science Foundation (DMS1764366)

  • Yi Feng

Pew Latin American Fellows Program (no)

  • Rafik Neme

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Detlef Weigel, Max Planck Institute for Biology Tübingen, Germany

Version history

  1. Preprint posted: May 10, 2022 (view preprint)
  2. Received: August 25, 2022
  3. Accepted: November 3, 2022
  4. Accepted Manuscript published: November 24, 2022 (version 1)
  5. Version of Record published: December 28, 2022 (version 2)

Copyright

© 2022, Feng et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,208
    Page views
  • 239
    Downloads
  • 4
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yi Feng
  2. Rafik Neme
  3. Leslie Y Beh
  4. Xiao Chen
  5. Jasper Braun
  6. Michael W Lu
  7. Laura F Landweber
(2022)
Comparative genomics reveals insight into the evolutionary origin of massively scrambled genomes
eLife 11:e82979.
https://doi.org/10.7554/eLife.82979

Share this article

https://doi.org/10.7554/eLife.82979

Further reading

    1. Evolutionary Biology
    2. Genetics and Genomics
    Thomas A Sasani, Aaron R Quinlan, Kelley Harris
    Research Article

    Maintaining germline genome integrity is essential and enormously complex. Although many proteins are involved in DNA replication, proofreading, and repair, mutator alleles have largely eluded detection in mammals. DNA replication and repair proteins often recognize sequence motifs or excise lesions at specific nucleotides. Thus, we might expect that the spectrum of de novo mutations – the frequencies of C>T, A>G, etc. – will differ between genomes that harbor either a mutator or wild-type allele. Previously, we used quantitative trait locus mapping to discover candidate mutator alleles in the DNA repair gene Mutyh that increased the C>A germline mutation rate in a family of inbred mice known as the BXDs (Sasani et al., 2022, Ashbrook et al., 2021). In this study we developed a new method to detect alleles associated with mutation spectrum variation and applied it to mutation data from the BXDs. We discovered an additional C>A mutator locus on chromosome 6 that overlaps Ogg1, a DNA glycosylase involved in the same base-excision repair network as Mutyh (David et al., 2007). Its effect depends on the presence of a mutator allele near Mutyh, and BXDs with mutator alleles at both loci have greater numbers of C>A mutations than those with mutator alleles at either locus alone. Our new methods for analyzing mutation spectra reveal evidence of epistasis between germline mutator alleles and may be applicable to mutation data from humans and other model organisms.

    1. Chromosomes and Gene Expression
    2. Evolutionary Biology
    Katherine Rickelton, Trisha M Zintel ... Courtney C Babbitt
    Research Article Updated

    Primate evolution has led to a remarkable diversity of behavioral specializations and pronounced brain size variation among species (Barton, 2012; DeCasien and Higham, 2019; Powell et al., 2017). Gene expression provides a promising opportunity for studying the molecular basis of brain evolution, but it has been explored in very few primate species to date (e.g. Khaitovich et al., 2005; Khrameeva et al., 2020; Ma et al., 2022; Somel et al., 2009). To understand the landscape of gene expression evolution across the primate lineage, we generated and analyzed RNA-seq data from four brain regions in an unprecedented eighteen species. Here, we show a remarkable level of variation in gene expression among hominid species, including humans and chimpanzees, despite their relatively recent divergence time from other primates. We found that individual genes display a wide range of expression dynamics across evolutionary time reflective of the diverse selection pressures acting on genes within primate brain tissue. Using our samples that represent a 190-fold difference in primate brain size, we identified genes with variation in expression most correlated with brain size. Our study extensively broadens the phylogenetic context of what is known about the molecular evolution of the brain across primates and identifies novel candidate genes for the study of genetic regulation of brain evolution.