Balancing true and false detection of intermittent sensory targets by adjusting the inputs to the evidence accumulation process

  1. Anna Catharina Geuzebroek  Is a corresponding author
  2. Hannah Craddock
  3. Redmond G O'Connell
  4. Simon P Kelly  Is a corresponding author
  1. University College Dublin, Ireland
  2. Trinity College Dublin, Ireland

Abstract

Decisions about noisy stimuli are widely understood to be made by accumulating evidence up to a decision bound that can be adjusted according to task demands. However, relatively little is known about how such mechanisms operate in continuous monitoring contexts requiring intermittent target detection. Here, we examined neural decision processes underlying detection of 1-second coherence-targets within continuous random dot motion, and how they are adjusted across contexts with Weak, Strong, or randomly Mixed Weak/Strong targets. Our prediction was that decision bounds would be set lower when Weak targets are more prevalent. Behavioural hit and false alarm rate patterns were consistent with this, and were well-captured by a bound-adjustable leaky accumulator model. However, Beta-band EEG signatures of motor preparation contradicted this, instead indicating lower bounds in the Strong-target context. We thus tested two alternative models in which decision bound dynamics were constrained directly by Beta measurements, respectively featuring leaky accumulation with adjustable leak, and non-leaky accumulation of evidence referenced to an adjustable sensory-level criterion. We found that the latter model best explained both behaviour and neural dynamics, highlighting novel means of decision policy regulation and the value of neurally-informed modelling.

Data availability

Code to recreated the Random Dot Motion task utilising Psychtoolbox is publicly available at https://github.com/AnnaCGeuzebroek/Context-Dependent-Detection. All code to recreated the behavioural and EEG data analysis as well as the modelling code can be found at https://github.com/AnnaCGeuzebroek/Continuous-Behavioural-Modelling. Pre-processed anonymised EEG and behavioural data is uploaded at OSFhttps://osf.io/yjvku/?view_only=7ed5aee5d09a4d5ca13de1ba169b0588

Article and author information

Author details

  1. Anna Catharina Geuzebroek

    School of Electrical and Electronic Engineering, University College Dublin, Dublin, Ireland
    For correspondence
    anna.geuzebroek@ucd.ie
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8287-2990
  2. Hannah Craddock

    School of Electrical and Electronic Engineering, University College Dublin, Dublin, Ireland
    Competing interests
    No competing interests declared.
  3. Redmond G O'Connell

    Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
    Competing interests
    Redmond G O'Connell, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6949-2793
  4. Simon P Kelly

    School of Electrical and Electronic Engineering, University College Dublin, Dublin, Ireland
    For correspondence
    simon.kelly@ucd.ie
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9983-3595

Funding

Science Fundation Ireland (15/CDA/3591)

  • Anna Catharina Geuzebroek
  • Simon P Kelly

Wellcome Trust (219572/Z/19/Z)

  • Anna Catharina Geuzebroek
  • Simon P Kelly

Horizon 2020 European Research Council Consolidator Grant Ind (865474)

  • Redmond G O'Connell

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All participants gave written consent prior to their participation and were compensated for their time with €25. The UCD Human Research Ethics Committee for Life Sciences approved all experimental procedures in accordance with the Declaration of Helsinki (LS-16-76-Craddock).

Copyright

© 2023, Geuzebroek et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 578
    views
  • 70
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anna Catharina Geuzebroek
  2. Hannah Craddock
  3. Redmond G O'Connell
  4. Simon P Kelly
(2023)
Balancing true and false detection of intermittent sensory targets by adjusting the inputs to the evidence accumulation process
eLife 12:e83025.
https://doi.org/10.7554/eLife.83025

Share this article

https://doi.org/10.7554/eLife.83025

Further reading

    1. Neuroscience
    Sven Ohl, Martin Rolfs
    Research Article

    Detecting causal relations structures our perception of events in the world. Here, we determined for visual interactions whether generalized (i.e. feature-invariant) or specialized (i.e. feature-selective) visual routines underlie the perception of causality. To this end, we applied a visual adaptation protocol to assess the adaptability of specific features in classical launching events of simple geometric shapes. We asked observers to report whether they observed a launch or a pass in ambiguous test events (i.e. the overlap between two discs varied from trial to trial). After prolonged exposure to causal launch events (the adaptor) defined by a particular set of features (i.e. a particular motion direction, motion speed, or feature conjunction), observers were less likely to see causal launches in subsequent ambiguous test events than before adaptation. Crucially, adaptation was contingent on the causal impression in launches as demonstrated by a lack of adaptation in non-causal control events. We assessed whether this negative aftereffect transfers to test events with a new set of feature values that were not presented during adaptation. Processing in specialized (as opposed to generalized) visual routines predicts that the transfer of visual adaptation depends on the feature similarity of the adaptor and the test event. We show that the negative aftereffects do not transfer to unadapted launch directions but do transfer to launch events of different speeds. Finally, we used colored discs to assign distinct feature-based identities to the launching and the launched stimulus. We found that the adaptation transferred across colors if the test event had the same motion direction as the adaptor. In summary, visual adaptation allowed us to carve out a visual feature space underlying the perception of causality and revealed specialized visual routines that are tuned to a launch’s motion direction.

    1. Neuroscience
    Gergely F Turi, Sasa Teng ... Yueqing Peng
    Research Article

    Synchronous neuronal activity is organized into neuronal oscillations with various frequency and time domains across different brain areas and brain states. For example, hippocampal theta, gamma, and sharp wave oscillations are critical for memory formation and communication between hippocampal subareas and the cortex. In this study, we investigated the neuronal activity of the dentate gyrus (DG) with optical imaging tools during sleep-wake cycles in mice. We found that the activity of major glutamatergic cell populations in the DG is organized into infraslow oscillations (0.01–0.03 Hz) during NREM sleep. Although the DG is considered a sparsely active network during wakefulness, we found that 50% of granule cells and about 25% of mossy cells exhibit increased activity during NREM sleep, compared to that during wakefulness. Further experiments revealed that the infraslow oscillation in the DG was correlated with rhythmic serotonin release during sleep, which oscillates at the same frequency but in an opposite phase. Genetic manipulation of 5-HT receptors revealed that this neuromodulatory regulation is mediated by Htr1a receptors and the knockdown of these receptors leads to memory impairment. Together, our results provide novel mechanistic insights into how the 5-HT system can influence hippocampal activity patterns during sleep.