FGF21 protects against hepatic lipotoxicity and macrophage activation to attenuate fibrogenesis in nonalcoholic steatohepatitis

Abstract

Analogues of the hepatokine FGF21 are in clinical development for type 2 diabetes and nonalcoholic steatohepatitis (NASH) treatment. Although their glucose-lowering and insulin-sensitizing effects have been largely unraveled, the mechanisms by which they alleviate liver injury have only been scarcely addressed. Here, we aimed to unveil the mechanisms underlying the protective effects of FGF21 on NASH using APOE*3-Leiden.CETP mice, a well-established model for human-like metabolic diseases. Liver-specific FGF21 overexpression was achieved in mice, followed by administration of a high-fat high-cholesterol diet for 23 weeks. FGF21 prevented hepatic lipotoxicity, accompanied by activation of thermogenic tissues and attenuation of adipose tissue inflammation, improvement of hyperglycemia and hypertriglyceridemia, and upregulation of hepatic programs involved in fatty acid oxidation and cholesterol removal. Furthermore, FGF21 inhibited hepatic inflammation, as evidenced by reduced Kupffer cell (KC) activation, diminished monocyte infiltration and lowered accumulation of monocyte-derived macrophages. Moreover, FGF21 decreased lipid- and scar-associated macrophages, which correlated with less hepatic fibrosis as demonstrated by reduced collagen accumulation. Collectively, hepatic FGF21 overexpression limits hepatic lipotoxicity, inflammation and fibrogenesis. Mechanistically, FGF21 blocks hepatic lipid influx and accumulation through combined endocrine and autocrine signaling, respectively, which prevents KC activation and lowers the presence of lipid- and scar-associated macrophages to inhibit fibrogenesis.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file.

Article and author information

Author details

  1. Cong Liu

    Department of Medicine, Leiden University Medical Center, Leiden, Netherlands
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2852-8953
  2. Milena Schönke

    Department of Medicine, Leiden University Medical Center, Leiden, Netherlands
    Competing interests
    No competing interests declared.
  3. Borah Spoorenberg

    Department of Medicine, Leiden University Medical Center, Leiden, Netherlands
    Competing interests
    No competing interests declared.
  4. Joost M Lambooij

    Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
    Competing interests
    No competing interests declared.
  5. Hendrik JP van der Zande

    Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
    Competing interests
    No competing interests declared.
  6. Enchen Zhou

    Department of Medicine, Leiden University Medical Center, Leiden, Netherlands
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3739-4934
  7. Maarten E Tushuizen

    5Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, Netherlands
    Competing interests
    No competing interests declared.
  8. Anne-Christine Andreasson

    Research and Early Development, AstraZeneca, Gothenburg, Sweden
    Competing interests
    Anne-Christine Andreasson, employee of AstraZeneca.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8323-0658
  9. Andrew Park

    Biologics Engineering and Targeted Delivery, AstraZeneca, Gaithersburg, United States
    Competing interests
    Andrew Park, employee of AstraZeneca.
  10. Stephanie Oldham

    Research and Early Development, AstraZeneca, Gaithersburg, United States
    Competing interests
    Stephanie Oldham, employee of AstraZeneca.
  11. Martin Uhrbom

    Research and Early Development, AstraZeneca, Gothenburg, Sweden
    Competing interests
    Martin Uhrbom, employee of AstraZeneca.
  12. Ingela Ahlstedt

    Research and Early Development, AstraZeneca, Gothenburg, Sweden
    Competing interests
    Ingela Ahlstedt, employee of AstraZeneca.
  13. Yasuhiro Ikeda

    Biologics Engineering and Targeted Delivery, AstraZeneca, Gaithersburg, United States
    Competing interests
    Yasuhiro Ikeda, employee of AstraZeneca.
  14. Kristina Wallenius

    Research and Early Development, AstraZeneca, Gothenburg, Sweden
    Competing interests
    Kristina Wallenius, employee of AstraZeneca.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3231-2733
  15. Xiao-Rong Peng

    Research and Early Development, AstraZeneca, Gothenburg, Sweden
    Competing interests
    Xiao-Rong Peng, employee of AstraZeneca.
  16. Bruno Guigas

    Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
    Competing interests
    No competing interests declared.
  17. Mariëtte R Boon

    Department of Medicine, Leiden University Medical Center, Leiden, Netherlands
    For correspondence
    m.r.boon@lumc.nl
    Competing interests
    No competing interests declared.
  18. Yanan Wang

    Department of Endocrinology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
    For correspondence
    y_wang@xjtufh.edu.cn
    Competing interests
    No competing interests declared.
  19. Patrick CN Rensen

    Department of Medicine, Leiden University Medical Center, Leiden, Netherlands
    For correspondence
    p.c.n.rensen@lumc.nl
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8455-4988

Funding

Diabetes Fonds (2015.81.1808)

  • Mariëtte R Boon

The Netherlands Organisation for Scientific Research-NWO (VENI grant 91617027)

  • Yanan Wang

Chinese Scholarship Council grant (CSC 201606010321)

  • Enchen Zhou

The Novo Nordisk Foundation (NNF18OC0032394)

  • Milena Schönke

The Netherlands Cardiovascular Research Initiative: an initiative with support of the Dutch Heart Foundation (CVON-GENIUS-2)

  • Patrick CN Rensen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were carried out according to the Institute for Laboratory Animal Research Guide for the Care and Use of Laboratory Animals, and were approved by the National Committee for Animal Experiments (Protocol No. AVD1160020173305) and by the Ethics Committee on Animal Care and Experimentation of the Leiden University Medical Center (Protocol No. PE.18.034.041).

Copyright

© 2023, Liu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,006
    views
  • 703
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Cong Liu
  2. Milena Schönke
  3. Borah Spoorenberg
  4. Joost M Lambooij
  5. Hendrik JP van der Zande
  6. Enchen Zhou
  7. Maarten E Tushuizen
  8. Anne-Christine Andreasson
  9. Andrew Park
  10. Stephanie Oldham
  11. Martin Uhrbom
  12. Ingela Ahlstedt
  13. Yasuhiro Ikeda
  14. Kristina Wallenius
  15. Xiao-Rong Peng
  16. Bruno Guigas
  17. Mariëtte R Boon
  18. Yanan Wang
  19. Patrick CN Rensen
(2023)
FGF21 protects against hepatic lipotoxicity and macrophage activation to attenuate fibrogenesis in nonalcoholic steatohepatitis
eLife 12:e83075.
https://doi.org/10.7554/eLife.83075

Share this article

https://doi.org/10.7554/eLife.83075

Further reading

    1. Immunology and Inflammation
    Weigao Zhang, Hu Liu ... Dan Weng
    Research Article

    As a central hub for metabolism, the liver exhibits strong adaptability to maintain homeostasis in response to food fluctuations throughout evolution. However, the mechanisms governing this resilience remain incompletely understood. In this study, we identified Receptor interacting protein kinase 1 (RIPK1) in hepatocytes as a critical regulator in preserving hepatic homeostasis during metabolic challenges, such as short-term fasting or high-fat dieting. Our results demonstrated that hepatocyte-specific deficiency of RIPK1 sensitized the liver to short-term fasting-induced liver injury and hepatocyte apoptosis in both male and female mice. Despite being a common physiological stressor that typically does not induce liver inflammation, short-term fasting triggered hepatic inflammation and compensatory proliferation in hepatocyte-specific RIPK1-deficient (Ripk1-hepKO) mice. Transcriptomic analysis revealed that short-term fasting oriented the hepatic microenvironment into an inflammatory state in Ripk1-hepKO mice, with up-regulated expression of inflammation and immune cell recruitment-associated genes. Single-cell RNA sequencing further confirmed the altered cellular composition in the liver of Ripk1-hepKO mice during fasting, highlighting the increased recruitment of macrophages to the liver. Mechanically, our results indicated that ER stress was involved in fasting-induced liver injury in Ripk1-hepKO mice. Overall, our findings revealed the role of RIPK1 in maintaining liver homeostasis during metabolic fluctuations and shed light on the intricate interplay between cell death, inflammation, and metabolism.

    1. Immunology and Inflammation
    Shih-Wen Huang, Yein-Gei Lai ... Nan-Shih Liao
    Research Article

    Natural killer (NK) cells can control metastasis through cytotoxicity and IFN-γ production independently of T cells in experimental metastasis mouse models. The inverse correlation between NK activity and metastasis incidence supports a critical role for NK cells in human metastatic surveillance. However, autologous NK cell therapy has shown limited benefit in treating patients with metastatic solid tumors. Using a spontaneous metastasis mouse model of MHC-I+ breast cancer, we found that transfer of IL-15/IL-12-conditioned syngeneic NK cells after primary tumor resection promoted long-term survival of mice with low metastatic burden and induced a tumor-specific protective T cell response that is essential for the therapeutic effect. Furthermore, NK cell transfer augments activation of conventional dendritic cells (cDCs), Foxp3-CD4+ T cells and stem cell-like CD8+ T cells in metastatic lungs, to which IFN-γ of the transferred NK cells contributes significantly. These results imply direct interactions between transferred NK cells and endogenous cDCs to enhance T cell activation. We conducted an investigator-initiated clinical trial of autologous NK cell therapy in six patients with advanced cancer and observed that the NK cell therapy was safe and showed signs of effectiveness. These findings indicate that autologous NK cell therapy is effective in treating established low burden metastases of MHC-I+ tumor cells by activating the cDC-T cell axis at metastatic sites.