Associations of ABO and rhesus d blood groups with phenome-wide disease incidence: a 41-year retrospective cohort study of 482,914 patients

  1. Peter Bruun-Rasmussen
  2. Morten Hanefeld Dziegiel
  3. Karina Banasik
  4. Pär Ingemar Johansson
  5. Søren Brunak  Is a corresponding author
  1. Copenhagen University Hospital, Denmark
  2. University of Copenhagen, Denmark

Abstract

Background: Whether natural selection may have attributed to the observed blood group frequency differences between populations remains debatable. The ABO system has been associated with several diseases and recently also with susceptibility to COVID-19 infection. Associative studies of the RhD system and diseases are sparser. A large disease-wide risk analysis may further elucidate the relationship between the ABO/RhD blood groups and disease incidence.

Methods: We performed a systematic log-linear quasi-Poisson regression analysis of the ABO/RhD blood groups across 1,312 phecode diagnoses. Unlike prior studies, we determined the incidence rate ratio foreach individual ABO blood group relative to all other ABO blood groups as opposed to using blood group O as the reference. Moreover, we used up to 41-years of nationwide Danish follow-up data, and a disease categorization scheme specifically developed for diagnosis-wide analysis. Further, we determined associations between the ABO/RhD blood groups and the age at the first diagnosis. Estimates were adjusted for multiple testing.

Results: The retrospective cohort included 482,914 Danish patients (60.4% females). The incidence rate ratios (IRRs) of 101 phecodes were found statistically significant between the ABO blood groups, while the IRRs of 28 phecodes were found statistically significant for the RhD blood group. The associations included cancers and musculoskeletal-, genitourinary-, endocrinal-, infectious-, cardiovascular-, and gastrointestinal diseases.

Conclusions: We found associations of disease-wide susceptibility differences between the blood groups of the ABO and RhD systems, including cancer of the tongue, monocytic leukemia, cervical cancer, osteoarthrosis, asthma, and HIV- and hepatitis B infection.. We found marginal evidence of associations between the blood groups and the age at first diagnosis.

Funding:; Novo Nordisk Foundation and the Innovation Fund Denmark.

Data availability

Anonymized patient data was used in this study. Due to national and EU regulations, the data cannot be shared with the wider research community. However, data can be accessed upon relevant application to the Danish authorities. The Danish Patient Safety Authority and the Danish Health Data Authority have permitted the use of the data in this study; whilst currently, the appropriate authority for journal data use in research is the regional committee ("Regionsråd"). The statistical summary data used to create the tables and graphs are available as Supplementary Data 1 and Supplementary Data 2. The analysis code is publicly available through www.github.com/peterbruun/blood_type_study.

Article and author information

Author details

  1. Peter Bruun-Rasmussen

    Department of Clinical Immunology, Copenhagen University Hospital, Copenhagen, Denmark
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3595-1311
  2. Morten Hanefeld Dziegiel

    Department of Clinical Immunology, Copenhagen University Hospital, Copenhagen, Denmark
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8034-1523
  3. Karina Banasik

    Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen N, Denmark
    Competing interests
    No competing interests declared.
  4. Pär Ingemar Johansson

    Department of Clinical Immunology, Copenhagen University Hospital, Copenhagen, Denmark
    Competing interests
    Pär Ingemar Johansson, has received grants from the AP Møller Foundation, Innovation Fund Denmark and Novo Nordisk Foundation. The author has been issued the following patents: Publication no: 20110201553, 20110268732, 20130040898, 20130261177, 20150057325, 20160113891, 9381166, 9381243, 20160250164, 9433589, 20160303040 and US20090053193A1. P.I. Johansson reports ownership of stocks in Trial-Lab AB, Endothel Pharma ApS, TissueLink ApS, and MoxieLab ApS. P.I. Johansson declares that the financial interests listed have no impact on the submitted work. The author has no other competing interests to declare. The author declares that the financial interests listed have no impact on the submitted work..
  5. Søren Brunak

    Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen N, Denmark
    For correspondence
    soren.brunak@cpr.ku.dk
    Competing interests
    Søren Brunak, participates on the Danish National Genome Center advisory board and is the Chairman for the data infrastructure board. The author has stock in Intomics A/S, Hoba Therapeutics Aps, Novo Nordisk A/S, Lundbeck A/S and ALK Abello. The author participates on the board of directors for both Proscion A/S and Intomics A/S. The author has no other competing interests to declare. Søren Brunak declares that the financial interests listed have no impact on the submitted work..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0316-5866

Funding

Novo Nordisk Fonden (NNF14CC0001)

  • Søren Brunak

Novo Nordisk Fonden (NNF17OC0027594)

  • Søren Brunak

Innovation Fund (5153-00002B)

  • Søren Brunak

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: This is a register-based study and informed consent for such studies is waived by the Danish Data Protection Agency. Data access was approved by the Danish Patient Safety Authority (3-3013-1731), the Danish Data Protection Agency (DT SUND 2016-50 and 2017-57) and the Danish Health Data Authority (FSEID 00003092 and FSEID 00003724).

Copyright

© 2023, Bruun-Rasmussen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 983
    views
  • 176
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Peter Bruun-Rasmussen
  2. Morten Hanefeld Dziegiel
  3. Karina Banasik
  4. Pär Ingemar Johansson
  5. Søren Brunak
(2023)
Associations of ABO and rhesus d blood groups with phenome-wide disease incidence: a 41-year retrospective cohort study of 482,914 patients
eLife 12:e83116.
https://doi.org/10.7554/eLife.83116

Share this article

https://doi.org/10.7554/eLife.83116

Further reading

    1. Epidemiology and Global Health
    2. Genetics and Genomics
    Wei Q Deng, Nathan Cawte ... Sonia S Anand
    Research Article

    Background:

    Maternal smoking has been linked to adverse health outcomes in newborns but the extent to which it impacts newborn health has not been quantified through an aggregated cord blood DNA methylation (DNAm) score. Here, we examine the feasibility of using cord blood DNAm scores leveraging large external studies as discovery samples to capture the epigenetic signature of maternal smoking and its influence on newborns in White European and South Asian populations.

    Methods:

    We first examined the association between individual CpGs and cigarette smoking during pregnancy, and smoking exposure in two White European birth cohorts (n=744). Leveraging established CpGs for maternal smoking, we constructed a cord blood epigenetic score of maternal smoking that was validated in one of the European-origin cohorts (n=347). This score was then tested for association with smoking status, secondary smoking exposure during pregnancy, and health outcomes in offspring measured after birth in an independent White European (n=397) and a South Asian birth cohort (n=504).

    Results:

    Several previously reported genes for maternal smoking were supported, with the strongest and most consistent association signal from the GFI1 gene (6 CpGs with p<5 × 10-5). The epigenetic maternal smoking score was strongly associated with smoking status during pregnancy (OR = 1.09 [1.07, 1.10], p=5.5 × 10-33) and more hours of self-reported smoking exposure per week (1.93 [1.27, 2.58], p=7.8 × 10-9) in White Europeans. However, it was not associated with self-reported exposure (p>0.05) among South Asians, likely due to a lack of smoking in this group. The same score was consistently associated with a smaller birth size (–0.37±0.12 cm, p=0.0023) in the South Asian cohort and a lower birth weight (–0.043±0.013 kg, p=0.0011) in the combined cohorts.

    Conclusions:

    This cord blood epigenetic score can help identify babies exposed to maternal smoking and assess its long-term impact on growth. Notably, these results indicate a consistent association between the DNAm signature of maternal smoking and a small body size and low birth weight in newborns, in both White European mothers who exhibited some amount of smoking and in South Asian mothers who themselves were not active smokers.

    Funding:

    This study was funded by the Canadian Institutes of Health Research Metabolomics Team Grant: MWG-146332.

    1. Epidemiology and Global Health
    2. Microbiology and Infectious Disease
    Patrick E Brown, Sze Hang Fu ... Ab-C Study Collaborators
    Research Article Updated

    Background:

    Few national-level studies have evaluated the impact of ‘hybrid’ immunity (vaccination coupled with recovery from infection) from the Omicron variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).

    Methods:

    From May 2020 to December 2022, we conducted serial assessments (each of ~4000–9000 adults) examining SARS-CoV-2 antibodies within a mostly representative Canadian cohort drawn from a national online polling platform. Adults, most of whom were vaccinated, reported viral test-confirmed infections and mailed self-collected dried blood spots (DBSs) to a central lab. Samples underwent highly sensitive and specific antibody assays to spike and nucleocapsid protein antigens, the latter triggered only by infection. We estimated cumulative SARS-CoV-2 incidence prior to the Omicron period and during the BA.1/1.1 and BA.2/5 waves. We assessed changes in antibody levels and in age-specific active immunity levels.

    Results:

    Spike levels were higher in infected than in uninfected adults, regardless of vaccination doses. Among adults vaccinated at least thrice and infected more than 6 months earlier, spike levels fell notably and continuously for the 9-month post-vaccination. In contrast, among adults infected within 6 months, spike levels declined gradually. Declines were similar by sex, age group, and ethnicity. Recent vaccination attenuated declines in spike levels from older infections. In a convenience sample, spike antibody and cellular responses were correlated. Near the end of 2022, about 35% of adults above age 60 had their last vaccine dose more than 6 months ago, and about 25% remained uninfected. The cumulative incidence of SARS-CoV-2 infection rose from 13% (95% confidence interval 11–14%) before omicron to 78% (76–80%) by December 2022, equating to 25 million infected adults cumulatively. However, the coronavirus disease 2019 (COVID-19) weekly death rate during the BA.2/5 waves was less than half of that during the BA.1/1.1 wave, implying a protective role for hybrid immunity.

    Conclusions:

    Strategies to maintain population-level hybrid immunity require up-to-date vaccination coverage, including among those recovering from infection. Population-based, self-collected DBSs are a practicable biological surveillance platform.

    Funding:

    Funding was provided by the COVID-19 Immunity Task Force, Canadian Institutes of Health Research, Pfizer Global Medical Grants, and St. Michael’s Hospital Foundation. PJ and ACG are funded by the Canada Research Chairs Program.