Evidence for absence of links between striatal dopamine synthesis capacity and working memory capacity, spontaneous eye-blink rate, and trait impulsivity

  1. Ruben van den Bosch  Is a corresponding author
  2. Frank H Hezemans
  3. Jessica I Määttä
  4. Lieke Hofmans
  5. Danae Papadopetraki
  6. Robbert-Jan Verkes
  7. Andre F Marquand
  8. Jan Booij
  9. Roshan Cools
  1. Radboud University Nijmegen, Netherlands
  2. Stockholm University, Sweden
  3. University of Amsterdam, Netherlands
  4. Radboud University Nijmegen Medical Centre, Netherlands
  5. Amsterdam University Medical Centers, Netherlands

Abstract

Individual differences in striatal dopamine synthesis capacity have been associated with working memory capacity, trait impulsivity and spontaneous eye-blink rate (sEBR), as measured with readily available and easily administered, 'off-the-shelf' tests. Such findings have raised the suggestion that individual variation in dopamine synthesis capacity, estimated with expensive and invasive brain positron emission tomography (PET) scans, can be approximated with simple, more pragmatic tests. However, direct evidence for the relationship between these simple trait measures and striatal dopamine synthesis capacity has been limited and inconclusive. We measured striatal dopamine synthesis capacity using [18F]-FDOPA PET in a large sample of healthy volunteers (N=94) and assessed the correlation with simple, short tests of working memory capacity, trait impulsivity, and sEBR. We additionally explored the relationship with an index of subjective reward sensitivity. None of these trait measures correlated significantly with striatal dopamine synthesis capacity, nor did they have out-of-sample predictive power. Bayes Factor analyses indicated the evidence was in favour of absence of correlations for all but subjective reward sensitivity. These results warrant caution for using these off-the-shelf trait measures as proxies of striatal dopamine synthesis capacity.

Data availability

The minimally processed data used in this study and the overarching project it is part of are available from the Donders Institute Data Repository (https://doi.org/10.34973/wn51-ej53; custom data use agreement RU-DI-HD-1.0). The final data derivatives relevant to the current work, as well as all code for data analysis and figures creation, are available from a separate collection on the Donders Institute Data Repository (https://doi.org/10.34973/0sce-z290).

The following data sets were generated

Article and author information

Author details

  1. Ruben van den Bosch

    Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
    For correspondence
    ruben.vandenbosch@donders.ru.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3994-8291
  2. Frank H Hezemans

    Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. Jessica I Määttä

    Department of Psychology, Stockholm University, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  4. Lieke Hofmans

    Department of Developmental Psychology, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  5. Danae Papadopetraki

    Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  6. Robbert-Jan Verkes

    Department of Psychiatry, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  7. Andre F Marquand

    Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  8. Jan Booij

    Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  9. Roshan Cools

    Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.

Funding

Nederlandse Organisatie voor Wetenschappelijk Onderzoek (453-14-015)

  • Roshan Cools

Horizon 2020 Framework Programme (945539)

  • Roshan Cools

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All participants provided written informed consent. The study was approved by the local ethics committee ("Commissie Mensgebonden Onderzoek", CMO region Arnhem-Nijmegen, The Netherlands: protocol NL57538.091.16).

Copyright

© 2023, van den Bosch et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,184
    views
  • 124
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ruben van den Bosch
  2. Frank H Hezemans
  3. Jessica I Määttä
  4. Lieke Hofmans
  5. Danae Papadopetraki
  6. Robbert-Jan Verkes
  7. Andre F Marquand
  8. Jan Booij
  9. Roshan Cools
(2023)
Evidence for absence of links between striatal dopamine synthesis capacity and working memory capacity, spontaneous eye-blink rate, and trait impulsivity
eLife 12:e83161.
https://doi.org/10.7554/eLife.83161

Share this article

https://doi.org/10.7554/eLife.83161

Further reading

    1. Neuroscience
    Sven Ohl, Martin Rolfs
    Research Article

    Detecting causal relations structures our perception of events in the world. Here, we determined for visual interactions whether generalized (i.e. feature-invariant) or specialized (i.e. feature-selective) visual routines underlie the perception of causality. To this end, we applied a visual adaptation protocol to assess the adaptability of specific features in classical launching events of simple geometric shapes. We asked observers to report whether they observed a launch or a pass in ambiguous test events (i.e. the overlap between two discs varied from trial to trial). After prolonged exposure to causal launch events (the adaptor) defined by a particular set of features (i.e. a particular motion direction, motion speed, or feature conjunction), observers were less likely to see causal launches in subsequent ambiguous test events than before adaptation. Crucially, adaptation was contingent on the causal impression in launches as demonstrated by a lack of adaptation in non-causal control events. We assessed whether this negative aftereffect transfers to test events with a new set of feature values that were not presented during adaptation. Processing in specialized (as opposed to generalized) visual routines predicts that the transfer of visual adaptation depends on the feature similarity of the adaptor and the test event. We show that the negative aftereffects do not transfer to unadapted launch directions but do transfer to launch events of different speeds. Finally, we used colored discs to assign distinct feature-based identities to the launching and the launched stimulus. We found that the adaptation transferred across colors if the test event had the same motion direction as the adaptor. In summary, visual adaptation allowed us to carve out a visual feature space underlying the perception of causality and revealed specialized visual routines that are tuned to a launch’s motion direction.

    1. Neuroscience
    Gergely F Turi, Sasa Teng ... Yueqing Peng
    Research Article

    Synchronous neuronal activity is organized into neuronal oscillations with various frequency and time domains across different brain areas and brain states. For example, hippocampal theta, gamma, and sharp wave oscillations are critical for memory formation and communication between hippocampal subareas and the cortex. In this study, we investigated the neuronal activity of the dentate gyrus (DG) with optical imaging tools during sleep-wake cycles in mice. We found that the activity of major glutamatergic cell populations in the DG is organized into infraslow oscillations (0.01–0.03 Hz) during NREM sleep. Although the DG is considered a sparsely active network during wakefulness, we found that 50% of granule cells and about 25% of mossy cells exhibit increased activity during NREM sleep, compared to that during wakefulness. Further experiments revealed that the infraslow oscillation in the DG was correlated with rhythmic serotonin release during sleep, which oscillates at the same frequency but in an opposite phase. Genetic manipulation of 5-HT receptors revealed that this neuromodulatory regulation is mediated by Htr1a receptors and the knockdown of these receptors leads to memory impairment. Together, our results provide novel mechanistic insights into how the 5-HT system can influence hippocampal activity patterns during sleep.