Evidence for absence of links between striatal dopamine synthesis capacity and working memory capacity, spontaneous eye-blink rate, and trait impulsivity

  1. Ruben van den Bosch  Is a corresponding author
  2. Frank H Hezemans
  3. Jessica I Määttä
  4. Lieke Hofmans
  5. Danae Papadopetraki
  6. Robbert-Jan Verkes
  7. Andre F Marquand
  8. Jan Booij
  9. Roshan Cools
  1. Radboud University Nijmegen, Netherlands
  2. Stockholm University, Sweden
  3. University of Amsterdam, Netherlands
  4. Radboud University Nijmegen Medical Centre, Netherlands
  5. Amsterdam University Medical Centers, Netherlands

Abstract

Individual differences in striatal dopamine synthesis capacity have been associated with working memory capacity, trait impulsivity and spontaneous eye-blink rate (sEBR), as measured with readily available and easily administered, 'off-the-shelf' tests. Such findings have raised the suggestion that individual variation in dopamine synthesis capacity, estimated with expensive and invasive brain positron emission tomography (PET) scans, can be approximated with simple, more pragmatic tests. However, direct evidence for the relationship between these simple trait measures and striatal dopamine synthesis capacity has been limited and inconclusive. We measured striatal dopamine synthesis capacity using [18F]-FDOPA PET in a large sample of healthy volunteers (N=94) and assessed the correlation with simple, short tests of working memory capacity, trait impulsivity, and sEBR. We additionally explored the relationship with an index of subjective reward sensitivity. None of these trait measures correlated significantly with striatal dopamine synthesis capacity, nor did they have out-of-sample predictive power. Bayes Factor analyses indicated the evidence was in favour of absence of correlations for all but subjective reward sensitivity. These results warrant caution for using these off-the-shelf trait measures as proxies of striatal dopamine synthesis capacity.

Data availability

The minimally processed data used in this study and the overarching project it is part of are available from the Donders Institute Data Repository (https://doi.org/10.34973/wn51-ej53; custom data use agreement RU-DI-HD-1.0). The final data derivatives relevant to the current work, as well as all code for data analysis and figures creation, are available from a separate collection on the Donders Institute Data Repository (https://doi.org/10.34973/0sce-z290).

The following data sets were generated

Article and author information

Author details

  1. Ruben van den Bosch

    Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
    For correspondence
    ruben.vandenbosch@donders.ru.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3994-8291
  2. Frank H Hezemans

    Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. Jessica I Määttä

    Department of Psychology, Stockholm University, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  4. Lieke Hofmans

    Department of Developmental Psychology, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  5. Danae Papadopetraki

    Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  6. Robbert-Jan Verkes

    Department of Psychiatry, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  7. Andre F Marquand

    Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  8. Jan Booij

    Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  9. Roshan Cools

    Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.

Funding

Nederlandse Organisatie voor Wetenschappelijk Onderzoek (453-14-015)

  • Roshan Cools

Horizon 2020 Framework Programme (945539)

  • Roshan Cools

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Christian Büchel, University Medical Center Hamburg-Eppendorf, Germany

Ethics

Human subjects: All participants provided written informed consent. The study was approved by the local ethics committee ("Commissie Mensgebonden Onderzoek", CMO region Arnhem-Nijmegen, The Netherlands: protocol NL57538.091.16).

Version history

  1. Preprint posted: July 11, 2022 (view preprint)
  2. Received: September 1, 2022
  3. Accepted: April 19, 2023
  4. Accepted Manuscript published: April 21, 2023 (version 1)
  5. Version of Record published: May 5, 2023 (version 2)

Copyright

© 2023, van den Bosch et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 967
    views
  • 108
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ruben van den Bosch
  2. Frank H Hezemans
  3. Jessica I Määttä
  4. Lieke Hofmans
  5. Danae Papadopetraki
  6. Robbert-Jan Verkes
  7. Andre F Marquand
  8. Jan Booij
  9. Roshan Cools
(2023)
Evidence for absence of links between striatal dopamine synthesis capacity and working memory capacity, spontaneous eye-blink rate, and trait impulsivity
eLife 12:e83161.
https://doi.org/10.7554/eLife.83161

Share this article

https://doi.org/10.7554/eLife.83161

Further reading

    1. Neuroscience
    Alexandra L Jellinger, Rebecca L Suthard ... Steve Ramirez
    Research Article

    Negative memories engage a brain and body-wide stress response in humans that can alter cognition and behavior. Prolonged stress responses induce maladaptive cellular, circuit, and systems-level changes that can lead to pathological brain states and corresponding disorders in which mood and memory are affected. However, it is unclear if repeated activation of cells processing negative memories induces similar phenotypes in mice. In this study, we used an activity-dependent tagging method to access neuronal ensembles and assess their molecular characteristics. Sequencing memory engrams in mice revealed that positive (male-to-female exposure) and negative (foot shock) cells upregulated genes linked to anti- and pro-inflammatory responses, respectively. To investigate the impact of persistent activation of negative engrams, we chemogenetically activated them in the ventral hippocampus over 3 months and conducted anxiety and memory-related tests. Negative engram activation increased anxiety behaviors in both 6- and 14-month-old mice, reduced spatial working memory in older mice, impaired fear extinction in younger mice, and heightened fear generalization in both age groups. Immunohistochemistry revealed changes in microglial and astrocytic structure and number in the hippocampus. In summary, repeated activation of negative memories induces lasting cellular and behavioral abnormalities in mice, offering insights into the negative effects of chronic negative thinking-like behaviors on human health.

    1. Neuroscience
    Alexandra H Leighton, Juliette E Cheyne, Christian Lohmann
    Research Article

    Synaptic inputs to cortical neurons are highly structured in adult sensory systems, such that neighboring synapses along dendrites are activated by similar stimuli. This organization of synaptic inputs, called synaptic clustering, is required for high-fidelity signal processing, and clustered synapses can already be observed before eye opening. However, how clustered inputs emerge during development is unknown. Here, we employed concurrent in vivo whole-cell patch-clamp and dendritic calcium imaging to map spontaneous synaptic inputs to dendrites of layer 2/3 neurons in the mouse primary visual cortex during the second postnatal week until eye opening. We found that the number of functional synapses and the frequency of transmission events increase several fold during this developmental period. At the beginning of the second postnatal week, synapses assemble specifically in confined dendritic segments, whereas other segments are devoid of synapses. By the end of the second postnatal week, just before eye opening, dendrites are almost entirely covered by domains of co-active synapses. Finally, co-activity with their neighbor synapses correlates with synaptic stabilization and potentiation. Thus, clustered synapses form in distinct functional domains presumably to equip dendrites with computational modules for high-capacity sensory processing when the eyes open.