An armoured marine reptile from the Early Triassic of South China and its phylogenetic and evolutionary implications

  1. Andrzej S Wolniewicz
  2. Yuefeng Shen
  3. Qiang Li
  4. Yuanyuan Sun
  5. Yu Qiao
  6. Yajie Chen
  7. Yi-Wei Hu
  8. Jun Liu  Is a corresponding author
  1. Hefei University of Technology, China
  2. China Geological Survey, China

Abstract

Sauropterygia was a taxonomically and ecomorphologically diverse clade of Mesozoic marine reptiles spanning the Early Triassic to the Late Cretaceous. Sauropterygians are traditionally divided into two groups representing two markedly different body plans - the short-necked, durophagous Placodontia and the long-necked Eosauropterygia - whereas Saurosphargidae, a small clade of armoured marine reptiles, is generally considered as the sauropterygian sister-group. However, the early evolutionary history of sauropterygians and their phylogenetic relationships with other groups within Diapsida are still incompletely understood. Here, we report a new saurosphargid from the Early Triassic (Olenekian) of South China - Prosaurosphargis yingzishanensis gen. et sp. nov. - representing the earliest known occurrence of the clade. An updated phylogenetic analysis focussing on the interrelationships among diapsid reptiles recovers saurosphargids as nested within sauropterygians, forming a clade with eosauropterygians to the exclusion of placodonts. Furthermore, a clade comprising Eusaurosphargis and Palatodonta is recovered as the sauropterygian sister-group within Sauropterygomorpha tax. nov. The phylogenetic position of several Early and Middle Triassic sauropterygians of previously uncertain phylogenetic affinity, such as Atopodentatus, Hanosaurus, Majiashanosaurus and Corosaurus, is also clarified, elucidating the early evolutionary assembly of the sauropterygian body plan. Finally, our phylogenetic analysis supports the placement of Testudinata and Archosauromorpha within Archelosauria, a result strongly corroborated by molecular data, but only recently recovered in a phylogenetic analysis using a morphology-only dataset. Our study provides evidence for the rapid diversification of sauropterygians in the aftermath of the Permo-Triassic mass extinction event and emphasises the importance of broad taxonomic sampling in reconstructing phylogenetic relationships among extinct taxa.

Data availability

Specimen HFUT YZSB-19-109 is housed in the collections of the Geological Museum, Hefei University of Technology, Hefei, China and available for examination upon request to J.L. The phylogenetic data matrix used in this study is available in Source Data 1.

Article and author information

Author details

  1. Andrzej S Wolniewicz

    School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6336-8916
  2. Yuefeng Shen

    School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Qiang Li

    School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Yuanyuan Sun

    China Geological Survey, Chengdu, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Yu Qiao

    School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Yajie Chen

    School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Yi-Wei Hu

    School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Jun Liu

    School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, China
    For correspondence
    junliu@hfut.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7859-5209

Funding

National Natural Science Foundation of China (42172026)

  • Jun Liu

National Natural Science Foundation of China (41772003)

  • Jun Liu

National Natural Science Foundation of China (42202006)

  • Andrzej S Wolniewicz

National Natural Science Foundation of China (41902104)

  • Yuefeng Shen

National Natural Science Foundation of China (41807333)

  • Yuanyuan Sun

Chengdu Center of China Geological Survey (Liu Baojun Funding)

  • Yuanyuan Sun

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Wolniewicz et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,213
    views
  • 493
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andrzej S Wolniewicz
  2. Yuefeng Shen
  3. Qiang Li
  4. Yuanyuan Sun
  5. Yu Qiao
  6. Yajie Chen
  7. Yi-Wei Hu
  8. Jun Liu
(2023)
An armoured marine reptile from the Early Triassic of South China and its phylogenetic and evolutionary implications
eLife 12:e83163.
https://doi.org/10.7554/eLife.83163

Share this article

https://doi.org/10.7554/eLife.83163

Further reading

    1. Evolutionary Biology
    2. Genetics and Genomics
    Julie N Chuong, Nadav Ben Nun ... David Gresham
    Research Article

    Copy number variants (CNVs) are an important source of genetic variation underlying rapid adaptation and genome evolution. Whereas point mutation rates vary with genomic location and local DNA features, the role of genome architecture in the formation and evolutionary dynamics of CNVs is poorly understood. Previously, we found the GAP1 gene in Saccharomyces cerevisiae undergoes frequent amplification and selection in glutamine-limitation. The gene is flanked by two long terminal repeats (LTRs) and proximate to an origin of DNA replication (autonomously replicating sequence, ARS), which likely promote rapid GAP1 CNV formation. To test the role of these genomic elements on CNV-mediated adaptive evolution, we evolved engineered strains lacking either the adjacent LTRs, ARS, or all elements in glutamine-limited chemostats. Using a CNV reporter system and neural network simulation-based inference (nnSBI) we quantified the formation rate and fitness effect of CNVs for each strain. Removal of local DNA elements significantly impacts the fitness effect of GAP1 CNVs and the rate of adaptation. In 177 CNV lineages, across all four strains, between 26% and 80% of all GAP1 CNVs are mediated by Origin Dependent Inverted Repeat Amplification (ODIRA) which results from template switching between the leading and lagging strand during DNA synthesis. In the absence of the local ARS, distal ones mediate CNV formation via ODIRA. In the absence of local LTRs, homologous recombination can mediate gene amplification following de novo retrotransposon events. Our study reveals that template switching during DNA replication is a prevalent source of adaptive CNVs.

    1. Developmental Biology
    2. Evolutionary Biology
    Hope M Healey, Hayden B Penn ... William A Cresko
    Research Article

    Seahorses, pipefishes, and seadragons are fishes from the family Syngnathidae that have evolved extraordinary traits including male pregnancy, elongated snouts, loss of teeth, and dermal bony armor. The developmental genetic and cellular changes that led to the evolution of these traits are largely unknown. Recent syngnathid genome assemblies revealed suggestive gene content differences and provided the opportunity for detailed genetic analyses. We created a single-cell RNA sequencing atlas of Gulf pipefish embryos to understand the developmental basis of four traits: derived head shape, toothlessness, dermal armor, and male pregnancy. We completed marker gene analyses, built genetic networks, and examined the spatial expression of select genes. We identified osteochondrogenic mesenchymal cells in the elongating face that express regulatory genes bmp4, sfrp1a, and prdm16. We found no evidence for tooth primordia cells, and we observed re-deployment of osteoblast genetic networks in developing dermal armor. Finally, we found that epidermal cells expressed nutrient processing and environmental sensing genes, potentially relevant for the brooding environment. The examined pipefish evolutionary innovations are composed of recognizable cell types, suggesting that derived features originate from changes within existing gene networks. Future work addressing syngnathid gene networks across multiple stages and species is essential for understanding how the novelties of these fish evolved.