Translation of dipeptide repeat proteins in C9ORF72 ALS/FTD through unique and redundant AUG initiation codons

  1. Yoshifumi Sonobe
  2. Soojin Lee
  3. Gopinath Krishnan
  4. Yuanzheng Gu
  5. Deborah Y Kwon
  6. Fen-Biao Gao
  7. Raymond P Roos  Is a corresponding author
  8. Paschalis Kratsios  Is a corresponding author
  1. University of Chicago Medical Center, United States
  2. Department of Neurology, University of Chicago Medical Center, United States
  3. Neuroscience Institute, University of Chicago, United States
  4. RNA Therapeutics Institute, University of Massachusetts Chan Medical School, United States
  5. Department of Neurology, University of Massachusetts Chan Medical School, United States
  6. Neuromuscular & Movement Disorders, Biogen, United States
  7. Department of Neurobiology, University of Chicago, United States
7 figures, 1 table and 2 additional files

Figures

Figure 1 with 3 supplements
Poly-PR and poly-PG are translated from antisense CCCCGG repeats.

(A) Schematic diagram of the constructs with 35 CCCCGG repeats preceded by 1000-bp-long intronic sequence from human C9ORF72, and then followed by nanoluciferase (nLuc). (B) HEK293 and (C) NSC34 cells were cotransfected with fLuc along with either ΔC9 or AS-C9 plasmids. The levels of luciferase activity were assessed by dual luciferase assays (mean ± s.e.m.). The experiments were repeated four times. One-way ANOVA with Tukey’s multiple comparison test was performed. (D–E) HEK293 and NSC34 cells were transfected with either ΔC9 or AS-C9 plasmids. Cell lysates were processed for western blotting, and immunostained with antibodies to (D) poly-PR, (E) poly-PG, and α-tubulin. (F–G) NSC34 cells transfected with either ΔC9, (F) poly-PR::nLuc, or (G) poly-PG::nLuc were stained with a nuclear marker (4′,6-diamidino-2-phenylindole [DAPI]: blue) and with antibodies against poly-PR (F: green) or poly-PG (G: green). Scale bars indicate 20 μm. (H–I) NSC34 cells were transfected with either ΔC9, (H) poly-PR::nLuc, or (I) poly-PG::nLuc plasmids. WST-8 assay was performed to assess the cell viability. The experiments were repeated five times. Unpaired t test was performed.

Figure 1—source data 1

Full raw unedited images of western blots shown in Figure 1.

Figures with the uncropped blots are clearly labeled with the relevant bands.

https://cdn.elifesciences.org/articles/83189/elife-83189-fig1-data1-v2.zip
Figure 1—figure supplement 1
Nanoluciferase (nLuc) is fused to dipeptide repeats (DPRs) translated from antisense C9 plasmids containing CCCCGG repeats.

(A) Schematic diagram of the construct. (B) HEK293 and (C) NSC34 cells were transfected with either ΔC9, PG::nLuc, or positive control (Pos Ctrl) plasmids. The nanoluciferase (nLuc) expression plasmid pNL1.1.[Nluc/CMV] from Promega was used as positive control. Cell lysates were processed for western blotting, and immunostained with antibodies to poly-PG, nLuc, and α- tubulin.

Figure 1—figure supplement 1—source data 1

Full raw unedited images of western blots shown in Figure 1—figure supplement 1.

Figures with the uncropped blots are clearly labeled with the relevant bands.

https://cdn.elifesciences.org/articles/83189/elife-83189-fig1-figsupp1-data1-v2.zip
Figure 1—figure supplement 2
Expression levels of poly-PR and poly-PG in the RIPA-insoluble fraction.

(A) Schematic diagram of the constructs. (B, D, F, H) HEK293 and (C, E, G, I) NSC34 cells were transfected with either ΔC9 (blue) or AS-C9 (red) plasmids. Cell lysates were fractionated into RIPA-soluble (S) and -insoluble (I) fraction. Western blotting was performed and immunostained with antibodies to poly-PR (B–C), poly-PG (F–G), α-tubulin, and H3K4me2. H3K4me2 is a reliable marker for the RIPA-insoluble fraction (see Materials and methods). (D–E, H–I) The signal intensity of the bands was quantified. The expression levels of poly-PR (D–E) or poly-PG (H–I) in AS-C9 of RIPA-soluble fraction were set to 1.0. Experiments were repeated four times. Two-way ANOVA with Tukey’s multiple comparison test was performed.

Figure 1—figure supplement 2—source data 1

Full raw unedited images of western blots shown in Figure 1—figure supplement 2.

Figures with the uncropped blots are clearly labeled with the relevant bands.

https://cdn.elifesciences.org/articles/83189/elife-83189-fig1-figsupp2-data1-v2.zip
Figure 1—figure supplement 3
Poly-PA is not detected by western blotting upon transfection of antisense C9 plasmids containing CCCCGG repeats.

(A) Schematic diagram of the constructs. (B) HEK293 and (C) NSC34 cells were transfected with either ΔC9, AS-C9, or positive control plasmids. For positive control, we generated a plasmid that has an AUG start codon located at –67 bp upstream from CCCCGG repeats. This AUG is in poly-PA frame. Cell lysates were processed for western blotting, and immunostained with antibodies to poly-PA and α-tubulin.

Figure 1—figure supplement 3—source data 1

Full raw unedited images of western blots shown in Figure 1—figure supplement 3.

Figures with the uncropped blots are clearly labeled with the relevant bands.

https://cdn.elifesciences.org/articles/83189/elife-83189-fig1-figsupp3-data1-v2.zip
An AUG at –273 bp position is the start codon for poly-PR translation.

(A) Schematic diagram showing constructs with mutations in the putative start codons for poly-PR. HEK293 (B–C) and NSC34 (D–E) cells were transfected with indicated plasmids. Cell lysates were processed for western blotting, and immunostained with antibodies to poly-PR and α -tubulin. (B, D) Representative blots are shown. (C, E) The signal intensity of the bands were quantified (mean ± s.e.m.). The experiments were repeated four times. One-way ANOVA with Tukey’s multiple comparison test was performed. (F) HEK293 and (G) NSC34 cells were cotransfected with the plasmids along with fLuc. The levels of luciferase activity were assessed by dual luciferase assays (mean ± s.e.m.). The experiments were repeated four times. One-way ANOVA with Tukey’s multiple comparison test was performed. (H) NSC34 cells transfected with either ΔC9, poly-PR::nLuc, or –273 AUG ->UAG plasmids were stained with 4′,6-diamidino-2-phenylindole [DAPI] (blue) and immunostained with a poly-PR antibody (green). Scale bars show 20 μm. (I) NSC34 cells were transfected with either ΔC9, wild type (WT), or –273 AUG ->UAG plasmids. WST-8 assay was performed to assess the cell viability. The experiments were repeated five times. One-way ANOVA with Tukey’s multiple comparison test was performed. In ΔC9 and WT, the same datasets as Figure 1H were used (mean ± s.e.m.). The experiments were repeated five times. One-way ANOVA with Tukey’s multiple comparison test was performed.

Figure 2—source data 1

Full raw unedited images of western blots shown in Figure 2.

Figures with the uncropped blots are clearly labeled with the relevant bands.

https://cdn.elifesciences.org/articles/83189/elife-83189-fig2-data1-v2.zip
Figure 3 with 1 supplement
Mutation of AUG codons to CCC fails to suppress poly-PG translation.

(A) Schematic diagram showing mutants with changes in the putative start codons for poly-PG. (B) HEK293 and NSC34 cells were transfected with indicated plasmids. Cell lysates were processed for western blotting, and immunostained with antibodies to poly-PG and α-tubulin. (C) HEK293 and (D) NSC34 cells were cotransfected with fLuc plasmid along with other indicated plasmids. The level of luciferase activity was assessed by dual luciferase assay (mean ± s.e.m.). The experiments were repeated four times. One-way ANOVA with Tukey’s multiple comparison test was performed.

Figure 3—source data 1

Full raw unedited images of western blots shown in Figure 3.

Figures with the uncropped blots are clearly labeled with the relevant bands.

https://cdn.elifesciences.org/articles/83189/elife-83189-fig3-data1-v2.zip
Figure 3—figure supplement 1
Quantification of data from Figure 3B.

(A) Schematic diagram of the constructs. (B–C) The signal intensity of total poly-PG and poly-PG translated from each of the AUGs (−212,–194, or –113) in (B) HEK293 and (C) NSC34 was quantified. One-way ANOVA with Tukey’s multiple comparison test was performed. The experiments were repeated four times. Data are presented as mean ± s.e.m.

Figure 4 with 1 supplement
An AUG at –194 bp position is the primary start codon for poly-PG translation.

(A) Schematic diagram of the constructs. (B) HEK293 and NSC34 cells were transfected with indicated plasmids. Cell lysates were processed for western blotting, and immunostained with antibodies to poly-PG and α-tubulin. (C) HEK293 and (D) NSC34 cells were cotransfected with fLuc plasmid along with indicated plasmids. The level of luciferase activity was assessed by dual luciferase assays (mean ± s.e.m.). The experiments were repeated four times. One-way ANOVA with Tukey’s multiple comparison test was performed.

Figure 4—source data 1

Full raw unedited images of western blots shown in Figure 4.

Figures with the uncropped blots are clearly labeled with the relevant bands.

https://cdn.elifesciences.org/articles/83189/elife-83189-fig4-data1-v2.zip
Figure 4—figure supplement 1
Quantification of data from Figure 4B.

(A) Schematic diagram of the constructs. (B–C) The signal intensity of poly-PG and poly-PG translated from each of the AUGs (−212, –194, or –113) in (B) HEK293 and (C) NSC34 cells was quantified. One-way ANOVA with Tukey’s multiple comparison test was performed. The experiments were repeated four times. Data are presented as mean ± s.e.m.

Figure 5 with 1 supplement
Redundancy of start codon usage in poly-PG translation.

(A) Schematic diagram of the constructs. (B) HEK293 and NSC34 cells were transfected with indicated plasmids. Cell lysates were processed for western blotting, and immunostained with antibodies to poly-PG and α-tubulin. (C) HEK293 and (D) NSC34 cells were cotransfected with fLuc plasmid along with indicated plasmids. The level of luciferase activity was assessed by dual luciferase assays (mean ± s.e.m.). The experiments were repeated four times. One-way ANOVA with Tukey’s multiple comparison test was performed. (E) NSC34 cells transfected with indicated plasmids were stained with 4′,6-diamidino-2-phenylindole [DAPI] (blue) and immunostained with a poly-PG antibody (green). Scale bars show 20 μm. (F) NSC34 cells were transfected with indicated plasmids. WST-8 assay was performed to assess the cell viability (mean ± s.e.m.). The experiments were repeated five times. One-way ANOVA with Tukey’s multiple comparison test was performed. In ΔC9 and wild type (WT), the same datasets as Figure 1I were used.

Figure 5—source data 1

Full raw unedited images of western blots shown in Figure 5.

Figures with the uncropped blots are clearly labeled with the relevant bands.

https://cdn.elifesciences.org/articles/83189/elife-83189-fig5-data1-v2.zip
Figure 5—figure supplement 1
Quantification of data from Figure 5B and C.

(A) Schematic diagram of the constructs. (B–C) The signal intensity of total poly-PG and poly-PG translated from each of the AUGs (−212, –194, or –113) in (B) HEK293 and (C) NSC34 cells was quantified. One-way ANOVA with Tukey’s multiple comparison test was performed. The experiments were repeated four times. Data are presented as mean ± s.e.m.

Downregulation of EIF2D does not reduce expression levels of poly-PG and poly-PR.

(A) A gRNA targeted the second exon of human EIF2D (see Materials and methods). (B) After CRISPR/Cas9-mediated gene editing, the EIF2D knockout (EIF2DKO) HEK293 cells carried different mutations on each allele. (C) Cell lysates from wild type (WT) and EIF2DKO HEK293 cells were processed for western blotting, and immunostained with antibodies to eIF2D and α-tubulin. (D–F) WT and EIF2DKO HEK293 cells were cotransfected with fLuc plasmid along with either (D–E) AS-C9 plasmids or (F) C9 plasmids containing 75 GGGGCC repeats. The level of luciferase activity was assessed by dual luciferase assays. (G–I) WT HEK293 cells were transfected with fLuc and either (G–H) AS-C9 plasmids or (I) C9 monocistronic plasmids containing 75 GGGGCC repeats along with anti-EIF2D short hairpin RNA (shRNA). The level of luciferase activity was assessed by dual luciferase assays (mean ± s.e.m.). The experiments were repeated three times. Unpaired t test was performed. The poly-GA reduction upon EIF2D shRNA is consistent with our previous observations (Sonobe et al., 2021), albeit more modest - likely due to a technical reason (a bicistronic construct containing 75 GGGGCC repeats was used in Sonobe et al., 2021).

Figure 6—source data 1

Full raw unedited images of western blots shown in Figure 6.

Figures with the uncropped blots are clearly labeled with the relevant bands.

https://cdn.elifesciences.org/articles/83189/elife-83189-fig6-data1-v2.zip
Figure 7 with 1 supplement
Dipeptide repeat (DPR) levels in human iPSC-derived neurons upon eIF2D knockdown.

(A) The EIF2D, EIF2A, and actin mRNA levels were assessed by real-time quantitative PCR on either isogenic control (26Z90) or C9ORF72 human motor neurons (patient line 26#6) upon small interfering RNA (siRNA) transfection (scramble or EIF2D siRNA-1). The eIF2D and eIF2A mRNA levels were normalized to actin. The experiments were repeated twice. p<0.05 by one-way ANOVA with Tukey’s post hoc test. (B) Poly-GA, poly-GR, and poly-GP levels in motor neurons differentiated independently (twice) from isogenic control and one C9ORF72 iPSC line. DPR levels were measured using an Meso Scale Discovery (MSD) immunoassay in a blinded manner. Data presented as mean ± SD. p-Values were calculated using two-way ANOVA with Dunnett’s multiple comparison test using Prism (9.1) software. (C–D) The EIF2D and actin mRNA levels were assessed by real-time quantitative PCR on C9ORF72 human motor neurons (two patient lines) upon siRNAs transfection (scramble, EIF2D siRNA-1 or EIF2D siRNA-2). The eIF2D mRNA levels were normalized to actin. The experiments were repeated three times. *p<0.05, ***p<0.001, ns, not significant by two-tailed unpaired t tests were used for two groups and a one-way ANOVA followed by Dunnett’s post hoc analysis was used for more than two groups. (E) Poly-GA, poly-GR, and poly-GP levels in motor neurons differentiated independently (n=3 times) from isogenic or healthy control lines and total two C9ORF72 patient iPSC lines (lines 27#11 and 40#3). DPR levels were measured using an MSD immunoassay in a blinded manner. For poly(GA) assay, total protein normalized poly(GA) concentrations were converted to percentage and presented as mean ± SE. For poly(GR), poly(GP) assay, total protein normalized electrochemiluminescence (ECL) values were converted to percentage and presented as mean ± SE. p-Values were calculated using one-way ANOVA with Dunnnett’s T3 multiple comparisons test .

Figure 7—figure supplement 1
The small interfering RNA (siRNA) against eIF2D knocks down eIF2D protein levels.

siRNA (s4496) against eIF2D knocks down eIF2D protein levels. 3×105 HEK293 cells were plated into six-well cell culture plate. 60 pmol siRNAs were transfected into the cells using 6.25 μl Lipofectamine RNAiMAX. 72 hr later, protein was extracted using RIPA buffer and western blotting was performed.

Figure 7—figure supplement 1—source data 1

Full raw unedited images of western blots shown in Figure 7—figure supplement 1.

Figures with the uncropped blots are clearly labeled with the relevant bands.

https://cdn.elifesciences.org/articles/83189/elife-83189-fig7-figsupp1-data1-v2.zip

Tables

Key resources table
Reagent type (species) or resourceDesignationSource or referenceIdentifiersAdditional information
Cell line
(Homo sapiens)
HEK293ATCCCRL-1573
Cell line
(Mus musculus)
NSC34Gift from Dr.
Neil R.
Cashman
(McGill
University)
PMID:1467557
Cell line
(Homo sapiens)
Isogenic iPS cellsLopez-Gonzalez et al., 2019
 PMID:31019093
26z90Isogenic control for patient line C926#6
Cell line
(Homo sapiens)
Isogenic iPS cellsLopez-Gonzalez et al., 2019
 PMID:31019093
27m91Isogenic control for patient line C927#11
Cell line
(Homo sapiens)
Healthy control iPS cellsAlmeida et al., 2013 PMID:23836290Control2#20Control for patient line C940#3
Cell line
(Homo sapiens)
C9orf72 patient iPS cellsAlmeida et al., 2013
PMID:23836290
C926#6C9orf72 patient line
Cell line
(Homo sapiens)
C9orf72 patient iPS cellsAlmeida et al., 2013
PMID:23836290
C927#11C9orf72 patient line
Cell line
(Homo sapiens)
C9orf72 patient iPS cellsFreibaum et al., 2015 PMID:26308899C940#3C9orf72 patient line
AntibodyAnti-Poly-PR
(Rabbit polyclonal)
EMD MilliporeABN1354WB (1:1000)
IF (1:250)
AntibodyAnti-Poly-PG
(Mouse monoclonal)
Target ALSTALS828.179WB (1:1000)
IF (1:100)
AntibodyAnti-Poly-PA
(Rabbit polyclonal)
EMD MilliporeABN1356WB (1:1000)
AntibodyAnti-nLuc
(Mouse monoclonal)
PromegaN700AWB (1:500)
AntibodyAnti-α-tubulin
(Rat monoclonal)
AbcamAb6160WB (1:5000)
AntibodyAnti-H3K4me2
(Rabbit polyclonal)
EMD Millipore07-030WB (1:2000)
AntibodyAnti-mouse horseradish peroxidase-conjugated secondary antibody
(Sheep monoclonal)
GE HealthcareNA931VWB (1:5000)
AntibodyAnti-rabbit horseradish peroxidase-conjugated secondary antibody
(Donkey monoclonal)
GE HealthcareNA934VWB (1:5000)
AntibodyAnti-rat horseradish peroxidase-conjugated secondary antibody
(Goat polyclonal)
Cell Signaling Technology7077SWB (1:1000)
AntibodyAlexa 488-conjugated anti-mouse IgG
(Chicken polyclonal)
Thermo Fisher ScientificA-21200IF (1:2000)
AntibodyAlexa 488-conjugated anti-rabbit IgG
(Goat polyclonal)
Thermo Fisher ScientificA-11008IF (1:2000)
Recombinant DNA reagentpAG-ΔC9::nLucPMID:29792928
Recombinant DNA reagentpAG-AS(C9)-Poly-PR::nLuc (Plasmid)This paperPlasmid vector containing 35 CCCCGG repeats preceded by 1000-bp-long intronic sequence from human C9ORF72, and NanoLuc in frame of poly-PR
Recombinant DNA reagentpAG-AS(C9)-Poly-PG::nLuc (Plasmid)This paperPlasmid vector containing 35 CCCCGG repeats preceded by 1000-bp-long intronic sequence from human C9ORF72, and NanoLuc in frame of poly-PG
Recombinant DNA reagentpAG-AS(C9)-Poly-PA::nLuc (Plasmid)This paperPlasmid vector containing 35 CCCCGG repeats preceded by 1000-bp-long intronic sequence from human C9ORF72, and NanoLuc in frame of poly-PA
Recombinant DNA reagentpAG-AS(C9)
-366CUG->CCC-Poly-PR::nLuc (Plasmid)
This paperpAG-AS(C9)-Poly-PR::nLuc vector with mutation of the CTG at
–366 bp from CCCCGG repeats to CCC
Recombinant DNA reagentpAG-AS(C9)
-366CUG->UAG-Poly-PR::nLuc (Plasmid)
This paperpAG-AS(C9)-Poly-PR::nLuc vector with mutation of the CTG at
–366 bp from CCCCGG repeats to TAG
Recombinant DNA reagentpAG-AS(C9)
-273AUG->CCC-Poly-PR::nLuc (Plasmid)
This paperpAG-AS(C9)-Poly-PR::nLuc vector with mutation of the ATG at
–273 bp from CCCCGG repeats to CCC
Recombinant DNA reagentpAG-AS(C9)
-273AUG->UAG-Poly-PR::nLuc (Plasmid)
This paperpAG-AS(C9)-Poly-PR::nLuc vector with mutation of the ATG at
–273 bp from CCCCGG repeats to TAG
Recombinant DNA reagentpAG-AS(C9)CCC-Poly-PG::nLuc (Plasmid)This paperpAG-AS(C9)-Poly-PG::nLuc vector with mutation of ATG at
–212 bp, ATG at –194 bp, CTG at
-182 bp, and ATG at
–113 bp from CCCCGG repeats to CCC
Recombinant DNA reagentpAG-AS(C9)
-212AUG-Poly-PG::nLuc (Plasmid)
This paperpAG-AS(C9)-Poly-PG::nLuc vector with mutation of ATG at
–194 bp, CTG at –182 bp, and ATG at
–113 bp from CCCCGG repeats to CCC
Recombinant DNA reagentpAG-AS(C9)
-194AUG-Poly-PG::nLuc (Plasmid)
This paperpAG-AS(C9)-Poly-PG::nLuc vector with mutation of ATG at
–212 bp, CTG at –182 bp, and ATG at
–113 bp from CCCCGG repeats to CCC
Recombinant DNA reagentpAG-AS(C9)
-182CUG-Poly-PG::nLuc (Plasmid)
This paperpAG-AS(C9)-Poly-PG::nLuc vector with mutation of ATG at
–212 bp, ATG at –194 bp, and ATG at
–113 bp from CCCCGG repeats to CCC
Recombinant DNA reagentpAG-AS(C9)
-113AUG-Poly-PG::nLuc (Plasmid)
This paperpAG-AS(C9)-Poly-PG::nLuc vector with mutation of ATG at
–212 bp, ATG at –194 bp, and CTG at
–182 bp from CCCCGG repeats to CCC
Recombinant DNA reagentpAG-AS(C9)
-212CCC-Poly-PG::nLuc (Plasmid)
This paperpAG-AS(C9)-Poly-PG::nLuc vector with mutation of ATG at
–212 bp from CCCCGG repeats to CCC
Recombinant DNA reagentpAG-AS(C9)
-194CCC-Poly-PG::nLuc (Plasmid)
This paperpAG-AS(C9)-Poly-PG::nLuc vector with mutation of ATG at
–194 bp from CCCCGG repeats to CCC
Recombinant DNA reagentpAG-AS(C9)
-113CCC-Poly-PG::nLuc (Plasmid)
This paperpAG-AS(C9)-Poly-PG::nLuc vector with mutation of ATG at
–113 bp from CCCCGG repeats to CCC
Recombinant DNA reagentpAG-AS(C9)
-212UAG-Poly-PG::nLuc (Plasmid)
This paperpAG-AS(C9)-Poly-PG::nLuc vector with mutation of ATG at
–212 bp from CCCCGG repeats to TAG
Recombinant DNA reagentpAG-AS(C9)
-194UAG-Poly-PG::nLuc
This paperpAG-AS(C9)-Poly-PG::nLuc vector with mutation of ATG at
–194 bp from CCCCGG repeats to TAG
Recombinant DNA reagentpAG-AS(C9)
-113UAG-Poly-PG::nLuc (Plasmid)
This paperpAG-AS(C9)-Poly-PG::nLuc vector with mutation of ATG at
–113 bp from CCCCGG repeats to TAG
Recombinant DNA reagentlentiCRISPR v2-EIF2D (Plasmid)This paperAddgene (#52961)lentiCRISPR plasmid containing gRNA sequence against EIF2D
Recombinant DNA reagentSh-Control (Plasmid)PMID:34654821Thermo Fisher Scientific (#AM5764)pSilencer 2.1-U6 neo plasmid containing non-specific control shRNA sequence
Recombinant DNA reagentSh-EIF2D (Plasmid)PMID:34654821Thermo Fisher Scientific (#AM5764)pSilencer 2.1-U6 neo plasmid containing shRNA sequence against EIF2D
Recombinant DNA reagentpGL4.50 [luc2/CMV/
Hygro] (Plasmid)
PromegaE131AExpression of firefly luciferase
Recombinant DNA reagentpNL1.1 CMV (Plasmid)PromegaN109AExpression of NanoLuc
Recombinant DNA reagentpcDNA 6/V5-His A
(Plasmid)
Thermo Fisher Scientific43-0003
Sequence-based reagentsiRNA: non-targeting negative controlThermo Fisher Scientific4390844Silencer Select
Sequence-based reagentsiRNA: EIF2DThermo Fisher ScientificS4495Silencer Select
Sequence-based reagentsiRNA: EIF2DThermo Fisher ScientificS4496Silencer Select
Chemical compound, drugHalt
Protease Inhibitor Cocktail
Thermo Fisher Scientific87786
Chemical compound, drugSB421542Stemgent04-0010-10Neuron
differentiation
Chemical compound, drugCHIR99021Stem Cell Technologies72054Neuron differentiation
Chemical compound, drugDMH1Stem Cell Technologies73634Neuron differentiation
Chemical compound, drugAll-Trans Retinoic AcidStem Cell Technologies72262Neuron differentiation
Commercial assay or kitQ5 Site-Directed Mutagenesis KitNew England BiolabsE0554S
Commercial assay or kitNano-Glo Dual-Luciferase Reporter assay systemPromegaN1610
Commercial assay or kitCell Counting Kit-8DojindoCK-04
Commercial assay or kitBCA Protein Assay KitThermo Fisher Scientific23225
Commercial assay or kit660 nm Protein Assay ReagentThermo Fisher Scientific22660
Software, algorithmImage Lab softwareBio-Rad
Software, algorithmImageJ2 softwarePMID:22930834
Software, algorithmGraphPad PrismDotmatics
Other5× passive lysis bufferPromegaE1941Lysis buffer for luciferase assay
Other4′,6-diamidino-2-phenylindole (DAPI)Thermo Fisher ScientificD1306Nuclear staining
(1 mg/ml)
OtherSuperSignal West Dura Extended Duration SubstrateThermo Fisher Scientific34076Horseradish peroxidase substrate for western blotting
OtherLipofectamine LTXThermo Fisher Scientific15338030Plasmid transfection reagent

Additional files

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yoshifumi Sonobe
  2. Soojin Lee
  3. Gopinath Krishnan
  4. Yuanzheng Gu
  5. Deborah Y Kwon
  6. Fen-Biao Gao
  7. Raymond P Roos
  8. Paschalis Kratsios
(2023)
Translation of dipeptide repeat proteins in C9ORF72 ALS/FTD through unique and redundant AUG initiation codons
eLife 12:e83189.
https://doi.org/10.7554/eLife.83189