Interaction between Teneurin-2 and microtubules via EB proteins provides a platform for GABAA receptor exocytosis

Abstract

Neurons form dense neural circuits by connecting to each other via synapses and exchange information through synaptic receptors to sustain brain activities. Excitatory postsynapses form and mature on spines composed predominantly of actin, while inhibitory synapses are formed directly on the shafts of dendrites where both actin and microtubules (MTs) are present. Thus, it is the accumulation of specific proteins that characterizes inhibitory synapses. In this study, we explored the mechanisms that enable efficient protein accumulation at inhibitory postsynapse. We found that some inhibitory synapses function to recruit the plus end of MTs. One of the synaptic organizers, Teneurin-2 (TEN2), tends to localize to such MT-rich synapses and recruits MTs to inhibitory postsynapses via interaction with MT plus-end tracking proteins EBs. This recruitment mechanism provides a platform for the exocytosis of GABAA receptors. These regulatory mechanisms could lead to a better understanding of the pathogenesis of disorders such as schizophrenia and autism, which are caused by excitatory/inhibitory (E/I) imbalances during synaptogenesis.

Data availability

Excel files are attached as source files.

The following previously published data sets were used

Article and author information

Author details

  1. Sotaro Ichinose

    Department of Anatomy, Gunma University, Gunma, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1470-2957
  2. Yoshihiro Susuki

    Department of Anatomy, Gunma University, Gunma, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Nobutake Hosoi

    Department of Neurophysiology and Neural Repair, Gunma University, Gunma, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Ryosuke Kaneko

    Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Mizuho Ebihara

    Department of Anatomy, Gunma University, Gunma, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Hirokazu Hirai

    Department of Neurophysiology and Neural Repair, Gunma University, Maebashi, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Hirohide Iwasaki

    Department of Anatomy, Gunma University, Gunma, Japan
    For correspondence
    h-iwasaki@gunma-u.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7432-5938

Funding

Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research (C) 18K06499)

  • Hirohide Iwasaki

Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research (C) 22K06805)

  • Hirohide Iwasaki

Takeda Foundation (Medical Research Grants)

  • Hirohide Iwasaki

Japan Society for the Promotion of Science (Grant-in-Aid for Young Scientist)

  • Sotaro Ichinose

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The experiments in this study have passed a rigorous ethical review and have been approved by Gunma University for animal experiments (approval number: 20-061) .

Copyright

© 2023, Ichinose et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,233
    views
  • 164
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sotaro Ichinose
  2. Yoshihiro Susuki
  3. Nobutake Hosoi
  4. Ryosuke Kaneko
  5. Mizuho Ebihara
  6. Hirokazu Hirai
  7. Hirohide Iwasaki
(2023)
Interaction between Teneurin-2 and microtubules via EB proteins provides a platform for GABAA receptor exocytosis
eLife 12:e83276.
https://doi.org/10.7554/eLife.83276

Share this article

https://doi.org/10.7554/eLife.83276

Further reading

    1. Cell Biology
    Jingjing Li, Xinyue Wang ... Vincent Archambault
    Research Article

    In animals, mitosis involves the breakdown of the nucleus. The reassembly of a nucleus after mitosis requires the reformation of the nuclear envelope around a single mass of chromosomes. This process requires Ankle2 (also known as LEM4 in humans) which interacts with PP2A and promotes the function of the Barrier-to-Autointegration Factor (BAF). Upon dephosphorylation, BAF dimers cross-bridge chromosomes and bind lamins and transmembrane proteins of the reassembling nuclear envelope. How Ankle2 functions in mitosis is incompletely understood. Using a combination of approaches in Drosophila, along with structural modeling, we provide several lines of evidence that suggest that Ankle2 is a regulatory subunit of PP2A, explaining how it promotes BAF dephosphorylation. In addition, we discovered that Ankle2 interacts with the endoplasmic reticulum protein Vap33, which is required for Ankle2 localization at the reassembling nuclear envelope during telophase. We identified the interaction sites of PP2A and Vap33 on Ankle2. Through genetic rescue experiments, we show that the Ankle2/PP2A interaction is essential for the function of Ankle2 in nuclear reassembly and that the Ankle2/Vap33 interaction also promotes this process. Our study sheds light on the molecular mechanisms of post-mitotic nuclear reassembly and suggests that the endoplasmic reticulum is not merely a source of membranes in the process, but also provides localized enzymatic activity.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Bhumil Patel, Maryke Grobler ... Needhi Bhalla
    Research Article

    Meiotic crossover recombination is essential for both accurate chromosome segregation and the generation of new haplotypes for natural selection to act upon. This requirement is known as crossover assurance and is one example of crossover control. While the conserved role of the ATPase, PCH-2, during meiotic prophase has been enigmatic, a universal phenotype when pch-2 or its orthologs are mutated is a change in the number and distribution of meiotic crossovers. Here, we show that PCH-2 controls the number and distribution of crossovers by antagonizing their formation. This antagonism produces different effects at different stages of meiotic prophase: early in meiotic prophase, PCH-2 prevents double-strand breaks from becoming crossover-eligible intermediates, limiting crossover formation at sites of initial double-strand break formation and homolog interactions. Later in meiotic prophase, PCH-2 winnows the number of crossover-eligible intermediates, contributing to the designation of crossovers and ultimately, crossover assurance. We also demonstrate that PCH-2 accomplishes this regulation through the meiotic HORMAD, HIM-3. Our data strongly support a model in which PCH-2’s conserved role is to remodel meiotic HORMADs throughout meiotic prophase to destabilize crossover-eligible precursors and coordinate meiotic recombination with synapsis, ensuring the progressive implementation of meiotic recombination and explaining its function in the pachytene checkpoint and crossover control.