Abstract

Prions replicate via the autocatalytic conversion of cellular prion protein (PrPC) into fibrillar assemblies of misfolded PrP. While this process has been extensively studied in vivo and in vitro, non-physiological reaction conditions of fibril formation in vitro have precluded the identification and mechanistic analysis of cellular proteins, which may alter PrP self-assembly and prion replication. Here, we have developed a fibril formation assay for recombinant murine and human PrP (23-231) under near-native conditions (NAA) to study the effect of cellular proteins, which may be risk factors or potential therapeutic targets in prion disease. Genetic screening suggests that variants that increase syntaxin-6 expression in the brain (gene: STX6) are risk factors for sporadic Creutzfeldt-Jakob disease (CJD). Analysis of the protein in NAA revealed, counterintuitively, that syntaxin-6 is a potent inhibitor of PrP fibril formation. It significantly delayed the lag phase of fibril formation at highly sub-stoichiometric molar ratios. However, when assessing toxicity of different aggregation time points to primary neurons, syntaxin-6 prolonged the presence of neurotoxic PrP species. Electron microscopy and super-resolution fluorescence microscopy revealed that, instead of highly ordered fibrils, in the presence of syntaxin-6 PrP formed less-ordered aggregates containing syntaxin-6. These data strongly suggest that the protein can directly alter the initial phase of PrP self-assembly and, uniquely, can act as an 'anti-chaperone', which promotes toxic aggregation intermediates by inhibiting fibril formation.

Data availability

All data generated or analysed during this study and all used analysis scripts have been uploaded to Mendeley data and are available to the public under doi: 10.17632/yggpkrgnx8.1

The following data sets were generated

Article and author information

Author details

  1. Daljit Sangar

    Institute of Prion Diseases, MRC Prion Unit, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Elizabeth Hill

    Institute of Prion Diseases, MRC Prion Unit, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Kezia Jack

    Institute of Prion Diseases, MRC Prion Unit, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Mark Batchelor

    Institute of Prion Diseases, MRC Prion Unit, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6847-5131
  5. Beenaben Mistry

    Institute of Prion Diseases, MRC Prion Unit, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Juan M Ribes

    Institute of Prion Diseases, MRC Prion Unit, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Graham S Jackson

    Institute of Prion Diseases, MRC Prion Unit, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Simon Mead

    Institute of Prion Diseases, MRC Prion Unit, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Jan Bieschke

    Institute of Prion Diseases, MRC Prion Unit, London, United Kingdom
    For correspondence
    j.bieschke@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3485-9767

Funding

National Institute of Neurological Disorders and Stroke (1R21NS101588-01A1)

  • Jan Bieschke

Medical Research Council (MC_UU_00024/6)

  • Daljit Sangar
  • Mark Batchelor
  • Graham S Jackson
  • Jan Bieschke

Medical Research Council (MRC Prion Unit Graduate Programme)

  • Elizabeth Hill
  • Kezia Jack
  • Beenaben Mistry

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Work with animals was performed under the licence granted by the UK Home Office (Project Licences 70/6454 and 70/7274) and conformed to University College London institutional and ARRIVE guidelines.

Copyright

© 2024, Sangar et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 385
    views
  • 101
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Daljit Sangar
  2. Elizabeth Hill
  3. Kezia Jack
  4. Mark Batchelor
  5. Beenaben Mistry
  6. Juan M Ribes
  7. Graham S Jackson
  8. Simon Mead
  9. Jan Bieschke
(2024)
Syntaxin-6 delays prion protein fibril formation and prolongs presence of toxic aggregation intermediates
eLife 13:e83320.
https://doi.org/10.7554/eLife.83320

Share this article

https://doi.org/10.7554/eLife.83320

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Marina Dajka, Tobias Rath ... Benesh Joseph
    Research Article

    Lipopolysaccharides (LPS) confer resistance against harsh conditions, including antibiotics, in Gram-negative bacteria. The lipopolysaccharide transport (Lpt) complex, consisting of seven proteins (A-G), exports LPS across the cellular envelope. LptB2FG forms an ATP-binding cassette transporter that transfers LPS to LptC. How LptB2FG couples ATP binding and hydrolysis with LPS transport to LptC remains unclear. We observed the conformational heterogeneity of LptB2FG and LptB2FGC in micelles and/or proteoliposomes using pulsed dipolar electron spin resonance spectroscopy. Additionally, we monitored LPS binding and release using laser-induced liquid bead ion desorption mass spectrometry. The β-jellyroll domain of LptF stably interacts with the LptG and LptC β-jellyrolls in both the apo and vanadate-trapped states. ATP binding at the cytoplasmic side is allosterically coupled to the selective opening of the periplasmic LptF β-jellyroll domain. In LptB2FG, ATP binding closes the nucleotide binding domains, causing a collapse of the first lateral gate as observed in structures. However, the second lateral gate, which forms the putative entry site for LPS, exhibits a heterogeneous conformation. LptC binding limits the flexibility of this gate to two conformations, likely representing the helix of LptC as either released from or inserted into the transmembrane domains. Our results reveal the regulation of the LPS entry gate through the dynamic behavior of the LptC transmembrane helix, while its β-jellyroll domain is anchored in the periplasm. This, combined with long-range ATP-dependent allosteric gating of the LptF β-jellyroll domain, may ensure efficient and unidirectional transport of LPS across the periplasm.

    1. Biochemistry and Chemical Biology
    Jaskamaljot Kaur Banwait, Liana Islam, Aaron L Lucius
    Research Article

    Escherichia coli ClpB and Saccharomyces cerevisiae Hsp104 are AAA+ motor proteins essential for proteome maintenance and thermal tolerance. ClpB and Hsp104 have been proposed to extract a polypeptide from an aggregate and processively translocate the chain through the axial channel of its hexameric ring structure. However, the mechanism of translocation and if this reaction is processive remains disputed. We reported that Hsp104 and ClpB are non-processive on unfolded model substrates. Others have reported that ClpB is able to processively translocate a mechanically unfolded polypeptide chain at rates over 240 amino acids (aa) per second. Here, we report the development of a single turnover stopped-flow fluorescence strategy that reports on processive protein unfolding catalyzed by ClpB. We show that when translocation catalyzed by ClpB is challenged by stably folded protein structure, the motor enzymatically unfolds the substrate at a rate of ~0.9 aa s−1 with a kinetic step-size of ~60 amino acids at sub-saturating [ATP]. We reconcile the apparent controversy by defining enzyme catalyzed protein unfolding and translocation as two distinct reactions with different mechanisms of action. We propose a model where slow unfolding followed by fast translocation represents an important mechanistic feature that allows the motor to rapidly translocate up to the next folded region or rapidly dissociate if no additional fold is encountered.