Microtubule-mediated GLUT4 trafficking is disrupted in insulin resistant skeletal muscle

  1. Jonas R Knudsen  Is a corresponding author
  2. Kaspar W Persson
  3. Carlos Henriquez-Olguin
  4. Zhencheng Li
  5. Nicolas Di Leo
  6. Sofie A Hesselager
  7. Steffen H Raun
  8. Janne R Hingst
  9. Raphaël Trouillon
  10. Martin Wohlwend
  11. Jørgen FP Wojtaszewski
  12. Martin AM Gijs
  13. Thomas Elbenhardt Jensen  Is a corresponding author
  1. University of Copenhagen, Denmark
  2. Novo Nordisk, Denmark
  3. Polytechnique Montréal, Canada
  4. École Polytechnique Fédérale de Lausanne, Switzerland

Abstract

Microtubules serve as tracks for long-range intracellular trafficking of glucose transporter 4 (GLUT4), but the role of this process in skeletal muscle and insulin resistance is unclear. Here, we used fixed and live-cell imaging to study microtubule-based GLUT4 trafficking in human and mouse muscle fibers and L6 rat muscle cells. We found GLUT4 localized on the microtubules in mouse and human muscle fibers. Pharmacological microtubule disruption using Nocodazole (Noco) prevented long-range GLUT4 trafficking and depleted GLUT4-enriched structures at microtubule nucleation sites in a fully reversible manner. Using a perifused muscle-on-a-chip system to enable real-time glucose uptake measurements in isolated mouse skeletal muscle fibers, we observed that Noco maximally disrupted the microtubule network after 5 min without affecting insulin-stimulated glucose uptake. In contrast, a 2h Noco treatment markedly decreased insulin responsiveness of glucose uptake. Insulin resistance in mouse muscle fibers induced either in vitro by C2 ceramides or in vivo by diet-induced obesity, impaired microtubule-based GLUT4 trafficking. Transient knockdown of the microtubule motor protein kinesin-1 protein KIF5B in L6 muscle cells reduced insulin-stimulated GLUT4 translocation while pharmacological kinesin-1 inhibition in incubated mouse muscles strongly impaired insulin-stimulated glucose uptake. Thus, in adult skeletal muscle fibers, the microtubule network is essential for intramyocellular GLUT4 movement, likely functioning to maintain an insulin-responsive cell-surface recruitable GLUT4 pool via kinesin-1 mediated trafficking.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files

Article and author information

Author details

  1. Jonas R Knudsen

    Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
    For correspondence
    jrk@nexs.ku.dk
    Competing interests
    Jonas R Knudsen, Affiliated with Novo Nordisk A/S.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5471-491X
  2. Kaspar W Persson

    Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    No competing interests declared.
  3. Carlos Henriquez-Olguin

    Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    No competing interests declared.
  4. Zhencheng Li

    Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    No competing interests declared.
  5. Nicolas Di Leo

    Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6268-890X
  6. Sofie A Hesselager

    Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    No competing interests declared.
  7. Steffen H Raun

    Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    No competing interests declared.
  8. Janne R Hingst

    Clinical Drug Development, Novo Nordisk, Soeborg, Denmark
    Competing interests
    Janne R Hingst, Affiliated with Novo Nordisk A/S.
  9. Raphaël Trouillon

    Department of Electrical Engineering, Polytechnique Montréal, Montreal, Canada
    Competing interests
    No competing interests declared.
  10. Martin Wohlwend

    Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    Competing interests
    No competing interests declared.
  11. Jørgen FP Wojtaszewski

    Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    Jørgen FP Wojtaszewski, has ongoing collaborations with Pfizer inc. and Novo Nordisk A/S unrelated to this study..
  12. Martin AM Gijs

    Laboratory of Microsystems, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    Competing interests
    No competing interests declared.
  13. Thomas Elbenhardt Jensen

    Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
    For correspondence
    tejensen@nexs.ku.dk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6139-8268

Funding

Novo Nordisk Fonden (15182)

  • Thomas Elbenhardt Jensen

Novo Nordisk Fonden (16OC0023046)

  • Jørgen FP Wojtaszewski

Novo Nordisk Fonden (17SA0031406)

  • Jonas R Knudsen

Novo Nordisk Fonden (17SA0031406)

  • Carlos Henriquez-Olguin

Lundbeckfonden (R313-2019-643)

  • Thomas Elbenhardt Jensen

Lundbeckfonden (R266-2017-4358)

  • Jørgen FP Wojtaszewski

Sundhed og Sygdom, Det Frie Forskningsråd (FSS8020-00288B)

  • Jørgen FP Wojtaszewski

Sundhed og Sygdom, Det Frie Forskningsråd (#9058-00047B)

  • Jonas R Knudsen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were approved by the Danish Animal Experimental Inspectorate or by the local animal experimentation committee of the Canton de Vaud under license 2890 and complied with the European Union legislation as outlined by the European Directive 2010/63/EU. The current work adheres to the standards outlined in the ARRIVE reporting guidelines.

Human subjects: The work involving human subjects was approved by the Copenhagen Ethics Committee (H-6-2014-038; Copenhagen, Denmark) and complied with the guidelines of the 2013 Declaration of Helsinki. Informed written consent was obtained from all subjects prior to entering the study.

Copyright

© 2023, Knudsen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,422
    views
  • 429
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jonas R Knudsen
  2. Kaspar W Persson
  3. Carlos Henriquez-Olguin
  4. Zhencheng Li
  5. Nicolas Di Leo
  6. Sofie A Hesselager
  7. Steffen H Raun
  8. Janne R Hingst
  9. Raphaël Trouillon
  10. Martin Wohlwend
  11. Jørgen FP Wojtaszewski
  12. Martin AM Gijs
  13. Thomas Elbenhardt Jensen
(2023)
Microtubule-mediated GLUT4 trafficking is disrupted in insulin resistant skeletal muscle
eLife 12:e83338.
https://doi.org/10.7554/eLife.83338

Share this article

https://doi.org/10.7554/eLife.83338

Further reading

    1. Cell Biology
    2. Developmental Biology
    Yuhkoh Satouh, Takaki Tatebe ... Ken Sato
    Research Article

    Mouse oocytes undergo drastic changes in organellar composition and their activities during maturation from the germinal vesicle (GV) to metaphase II (MII) stage. After fertilization, the embryo degrades parts of the maternal components via lysosomal degradation systems, including autophagy and endocytosis, as zygotic gene expression begins during embryogenesis. Here, we demonstrate that endosomal-lysosomal organelles form large spherical assembly structures, termed endosomal-lysosomal organellar assemblies (ELYSAs), in mouse oocytes. ELYSAs are observed in GV oocytes, attaining sizes up to 7–8 μm in diameter in MII oocytes. ELYSAs comprise tubular-vesicular structures containing endosomes and lysosomes along with cytosolic components. Most ELYSAs are also positive for an autophagy regulator, LC3. These characteristics of ELYSA resemble those of ELVA (endolysosomal vesicular assemblies) identified independently. The signals of V1-subunit of vacuolar ATPase tends to be detected on the periphery of ELYSAs in MII oocytes. After fertilization, the localization of the V1-subunit on endosomes and lysosomes increase as ELYSAs gradually disassemble at the 2-cell stage, leading to further acidification of endosomal-lysosomal organelles. These findings suggest that the ELYSA/ELVA maintain endosomal-lysosomal activity in a static state in oocytes for timely activation during early development.

    1. Cell Biology
    Laura Childers, Jieun Park ... Michel Bagnat
    Research Article

    Dietary protein absorption in neonatal mammals and fishes relies on the function of a specialized and conserved population of highly absorptive lysosome-rich enterocytes (LREs). The gut microbiome has been shown to enhance absorption of nutrients, such as lipids, by intestinal epithelial cells. However, whether protein absorption is also affected by the gut microbiome is poorly understood. Here, we investigate connections between protein absorption and microbes in the zebrafish gut. Using live microscopy-based quantitative assays, we find that microbes slow the pace of protein uptake and degradation in LREs. While microbes do not affect the number of absorbing LRE cells, microbes lower the expression of endocytic and protein digestion machinery in LREs. Using transgene-assisted cell isolation and single cell RNA-sequencing, we characterize all intestinal cells that take up dietary protein. We find that microbes affect expression of bacteria-sensing and metabolic pathways in LREs, and that some secretory cell types also take up protein and share components of protein uptake and digestion machinery with LREs. Using custom-formulated diets, we investigated the influence of diet and LRE activity on the gut microbiome. Impaired protein uptake activity in LREs, along with a protein-deficient diet, alters the microbial community and leads to an increased abundance of bacterial genera that have the capacity to reduce protein uptake in LREs. Together, these results reveal that diet-dependent reciprocal interactions between LREs and the gut microbiome regulate protein absorption.