Evolutionary divergence in the conformational landscapes of Tyrosine vs Serine/Threonine Kinases

  1. Joan Gizzio
  2. Abhishek Thakur
  3. Allan Haldane
  4. Ronald M Levy  Is a corresponding author
  1. Temple University, United States

Abstract

Inactive conformations of protein kinase catalytic domains where the DFG motif has a 'DFG-out' orientation and the activation loop is folded present a druggable binding pocket that is targeted by FDA-approved 'type-II inhibitors' in the treatment of cancers. Tyrosine Kinases (TKs) typically show strong binding affinity with a wide spectrum of type-II inhibitors while Serine/Threonine Kinases (STKs) usually bind more weakly which we suggest here is due to differences in the folded to extended conformational equilibrium of the activation loop between TKs vs. STKs. To investigate this, we use sequence covariation analysis with a Potts Hamiltonian statistical energy model to guide absolute binding free-energy molecular dynamics simulations of 74 protein-ligand complexes. Using the calculated binding free energies together with experimental values, we estimated free-energy costs for the large-scale (~17-20Å) conformational change of the activation loop by an indirect approach, circumventing the very challenging problem of simulating the conformational change directly. We also used the Potts statistical potential to thread large sequence ensembles over active and inactive kinase states. The structure-based and sequence-based analyses are consistent; together they suggest TKs evolved to have free-energy penalties for the classical 'folded activation loop' DFG-out conformation relative to the active conformation that is, on average, 4-6 kcal/mol smaller than the corresponding values for STKs. Potts statistical energy analysis suggests a molecular basis for this observation, wherein the activation loops of TKs are more weakly 'anchored' against the catalytic loop motif in the active conformation, and form more stable substrate-mimicking interactions in the inactive conformation. These results provide insights into the molecular basis for the divergent functional properties of TKs and STKs, and have pharmacological implications for the target selectivity of type-II inhibitors.

Data availability

Our computational study makes use of experimental data from the literature, which we extracted and curated manually rather than relying on any specific database. Any experimental data used can be found in our supporting information in the form of tables alongside appropriate citations. A large set of experimental "hit rates" were derived from binding affinities available from Davis et al., Nature Biotechnology (2011). The data used to generate various plots in the main text can be found in tables throughout the supporting information, as well as a distinct "supplementary table" which we provide. The Potts model code is made available as a github link, provided in the main text "Code Availability" section.

The following previously published data sets were used

Article and author information

Author details

  1. Joan Gizzio

    Center for Biophysics and Computational Biology, Temple University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Abhishek Thakur

    Center for Biophysics and Computational Biology, Temple University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4827-7602
  3. Allan Haldane

    Center for Biophysics and Computational Biology, Temple University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8343-1994
  4. Ronald M Levy

    Department of Chemistry, Temple University, Philadelphia, United States
    For correspondence
    ronlevy@temple.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8696-5177

Funding

National Institutes of Health (R35-GM132090)

  • Joan Gizzio
  • Abhishek Thakur
  • Allan Haldane
  • Ronald M Levy

National Institutes of Health (OD020095)

  • Joan Gizzio
  • Abhishek Thakur
  • Allan Haldane
  • Ronald M Levy

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Lucie Delemotte, KTH Royal Institute of Technology, Sweden

Version history

  1. Preprint posted: August 29, 2022 (view preprint)
  2. Received: September 9, 2022
  3. Accepted: December 22, 2022
  4. Accepted Manuscript published: December 23, 2022 (version 1)
  5. Version of Record published: January 6, 2023 (version 2)

Copyright

© 2022, Gizzio et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,950
    views
  • 238
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Joan Gizzio
  2. Abhishek Thakur
  3. Allan Haldane
  4. Ronald M Levy
(2022)
Evolutionary divergence in the conformational landscapes of Tyrosine vs Serine/Threonine Kinases
eLife 11:e83368.
https://doi.org/10.7554/eLife.83368

Share this article

https://doi.org/10.7554/eLife.83368

Further reading

    1. Computational and Systems Biology
    2. Medicine
    Zachary Shaffer, Roberto Romero ... Nardhy Gomez-Lopez
    Research Article

    Background:

    Preterm birth is the leading cause of neonatal morbidity and mortality worldwide. Most cases of preterm birth occur spontaneously and result from preterm labor with intact (spontaneous preterm labor [sPTL]) or ruptured (preterm prelabor rupture of membranes [PPROM]) membranes. The prediction of spontaneous preterm birth (sPTB) remains underpowered due to its syndromic nature and the dearth of independent analyses of the vaginal host immune response. Thus, we conducted the largest longitudinal investigation targeting vaginal immune mediators, referred to herein as the immunoproteome, in a population at high risk for sPTB.

    Methods:

    Vaginal swabs were collected across gestation from pregnant women who ultimately underwent term birth, sPTL, or PPROM. Cytokines, chemokines, growth factors, and antimicrobial peptides in the samples were quantified via specific and sensitive immunoassays. Predictive models were constructed from immune mediator concentrations.

    Results:

    Throughout uncomplicated gestation, the vaginal immunoproteome harbors a cytokine network with a homeostatic profile. Yet, the vaginal immunoproteome is skewed toward a pro-inflammatory state in pregnant women who ultimately experience sPTL and PPROM. Such an inflammatory profile includes increased monocyte chemoattractants, cytokines indicative of macrophage and T-cell activation, and reduced antimicrobial proteins/peptides. The vaginal immunoproteome has improved predictive value over maternal characteristics alone for identifying women at risk for early (<34 weeks) sPTB.

    Conclusions:

    The vaginal immunoproteome undergoes homeostatic changes throughout gestation and deviations from this shift are associated with sPTB. Furthermore, the vaginal immunoproteome can be leveraged as a potential biomarker for early sPTB, a subset of sPTB associated with extremely adverse neonatal outcomes.

    Funding:

    This research was conducted by the Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS) under contract HHSN275201300006C. ALT, KRT, and NGL were supported by the Wayne State University Perinatal Initiative in Maternal, Perinatal and Child Health.

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Ardalan Naseri, Degui Zhi, Shaojie Zhang
    Research Article

    Runs of homozygosity (ROH) segments, contiguous homozygous regions in a genome were traditionally linked to families and inbred populations. However, a growing literature suggests that ROHs are ubiquitous in outbred populations. Still, most existing genetic studies of ROH in populations are limited to aggregated ROH content across the genome, which does not offer the resolution for mapping causal loci. This limitation is mainly due to a lack of methods for the efficient identification of shared ROH diplotypes. Here, we present a new method, ROH-DICE, to find large ROH diplotype clusters, sufficiently long ROHs shared by a sufficient number of individuals, in large cohorts. ROH-DICE identified over 1 million ROH diplotypes that span over 100 SNPs and are shared by more than 100 UK Biobank participants. Moreover, we found significant associations of clustered ROH diplotypes across the genome with various self-reported diseases, with the strongest associations found between the extended HLA region and autoimmune disorders. We found an association between a diplotype covering the HFE gene and hemochromatosis, even though the well-known causal SNP was not directly genotyped or imputed. Using a genome-wide scan, we identified a putative association between carriers of an ROH diplotype in chromosome 4 and an increase in mortality among COVID-19 patients (P-value=1.82×10-11). In summary, our ROH-DICE method, by calling out large ROH diplotypes in a large outbred population, enables further population genetics into the demographic history of large populations. More importantly, our method enables a new genome-wide mapping approach for finding disease-causing loci with multi-marker recessive effects at a population scale.