Evolutionary divergence in the conformational landscapes of Tyrosine vs Serine/Threonine Kinases

  1. Joan Gizzio
  2. Abhishek Thakur
  3. Allan Haldane
  4. Ronald M Levy  Is a corresponding author
  1. Temple University, United States

Abstract

Inactive conformations of protein kinase catalytic domains where the DFG motif has a 'DFG-out' orientation and the activation loop is folded present a druggable binding pocket that is targeted by FDA-approved 'type-II inhibitors' in the treatment of cancers. Tyrosine Kinases (TKs) typically show strong binding affinity with a wide spectrum of type-II inhibitors while Serine/Threonine Kinases (STKs) usually bind more weakly which we suggest here is due to differences in the folded to extended conformational equilibrium of the activation loop between TKs vs. STKs. To investigate this, we use sequence covariation analysis with a Potts Hamiltonian statistical energy model to guide absolute binding free-energy molecular dynamics simulations of 74 protein-ligand complexes. Using the calculated binding free energies together with experimental values, we estimated free-energy costs for the large-scale (~17-20Å) conformational change of the activation loop by an indirect approach, circumventing the very challenging problem of simulating the conformational change directly. We also used the Potts statistical potential to thread large sequence ensembles over active and inactive kinase states. The structure-based and sequence-based analyses are consistent; together they suggest TKs evolved to have free-energy penalties for the classical 'folded activation loop' DFG-out conformation relative to the active conformation that is, on average, 4-6 kcal/mol smaller than the corresponding values for STKs. Potts statistical energy analysis suggests a molecular basis for this observation, wherein the activation loops of TKs are more weakly 'anchored' against the catalytic loop motif in the active conformation, and form more stable substrate-mimicking interactions in the inactive conformation. These results provide insights into the molecular basis for the divergent functional properties of TKs and STKs, and have pharmacological implications for the target selectivity of type-II inhibitors.

Data availability

Our computational study makes use of experimental data from the literature, which we extracted and curated manually rather than relying on any specific database. Any experimental data used can be found in our supporting information in the form of tables alongside appropriate citations. A large set of experimental "hit rates" were derived from binding affinities available from Davis et al., Nature Biotechnology (2011). The data used to generate various plots in the main text can be found in tables throughout the supporting information, as well as a distinct "supplementary table" which we provide. The Potts model code is made available as a github link, provided in the main text "Code Availability" section.

The following previously published data sets were used

Article and author information

Author details

  1. Joan Gizzio

    Center for Biophysics and Computational Biology, Temple University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Abhishek Thakur

    Center for Biophysics and Computational Biology, Temple University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4827-7602
  3. Allan Haldane

    Center for Biophysics and Computational Biology, Temple University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8343-1994
  4. Ronald M Levy

    Department of Chemistry, Temple University, Philadelphia, United States
    For correspondence
    ronlevy@temple.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8696-5177

Funding

National Institutes of Health (R35-GM132090)

  • Joan Gizzio
  • Abhishek Thakur
  • Allan Haldane
  • Ronald M Levy

National Institutes of Health (OD020095)

  • Joan Gizzio
  • Abhishek Thakur
  • Allan Haldane
  • Ronald M Levy

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Lucie Delemotte, KTH Royal Institute of Technology, Sweden

Publication history

  1. Preprint posted: August 29, 2022 (view preprint)
  2. Received: September 9, 2022
  3. Accepted: December 22, 2022
  4. Accepted Manuscript published: December 23, 2022 (version 1)
  5. Version of Record published: January 6, 2023 (version 2)

Copyright

© 2022, Gizzio et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 747
    Page views
  • 125
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Joan Gizzio
  2. Abhishek Thakur
  3. Allan Haldane
  4. Ronald M Levy
(2022)
Evolutionary divergence in the conformational landscapes of Tyrosine vs Serine/Threonine Kinases
eLife 11:e83368.
https://doi.org/10.7554/eLife.83368

Further reading

    1. Computational and Systems Biology
    Robert West, Hadrien Delattre ... Orkun S Soyer
    Research Article Updated

    Cycling of co-substrates, whereby a metabolite is converted among alternate forms via different reactions, is ubiquitous in metabolism. Several cycled co-substrates are well known as energy and electron carriers (e.g. ATP and NAD(P)H), but there are also other metabolites that act as cycled co-substrates in different parts of central metabolism. Here, we develop a mathematical framework to analyse the effect of co-substrate cycling on metabolic flux. In the cases of a single reaction and linear pathways, we find that co-substrate cycling imposes an additional flux limit on a reaction, distinct to the limit imposed by the kinetics of the primary enzyme catalysing that reaction. Using analytical methods, we show that this additional limit is a function of the total pool size and turnover rate of the cycled co-substrate. Expanding from this insight and using simulations, we show that regulation of these two parameters can allow regulation of flux dynamics in branched and coupled pathways. To support these theoretical insights, we analysed existing flux measurements and enzyme levels from the central carbon metabolism and identified several reactions that could be limited by the dynamics of co-substrate cycling. We discuss how the limitations imposed by co-substrate cycling provide experimentally testable hypotheses on specific metabolic phenotypes. We conclude that measuring and controlling co-substrate dynamics is crucial for understanding and engineering metabolic fluxes in cells.

    1. Computational and Systems Biology
    2. Neuroscience
    Hossein Shahabi, Dileep R Nair, Richard M Leahy
    Research Article

    Seizure generation, propagation, and termination occur through spatiotemporal brain networks. In this paper, we demonstrate the significance of large-scale brain interactions in high-frequency (80-200 Hz) for identification of the epileptogenic zone (EZ) and seizure evolution. To incorporate the continuity of neural dynamics, here we have modeled brain connectivity constructed from stereoelectroencephalography (SEEG) data during seizures using multilayer networks. After introducing a new measure of brain connectivity for temporal networks, named multilayer eigenvector centrality (mlEVC), we applied a consensus hierarchical clustering on the developed model to identify the epileptogenic zone (EZ) as a cluster of nodes with distinctive brain connectivity in the ictal period. Our algorithm could successfully predict electrodes inside the resected volume as EZ for 88% of participants, who all were seizure-free for at least 12 months after surgery. Our findings illustrated significant and unique desynchronization between EZ and the rest of the brain in early to mid-seizure. We showed that aging and duration of epilepsy intensify this desynchronization, which can be the outcome of abnormal neuroplasticity. Additionally, we illustrated that seizures evolve with various network topologies, confirming the existence of different epileptogenic networks in each patient. Our findings suggest not only the importance of early intervention in epilepsy but the possible factor which correlates with disease severity. Moreover, by analyzing the propagation patterns of different seizures, we asserted the necessity of collecting sufficient data for identifying the epileptogenic networks.