Z-REX uncovers a bifurcation in function of Keap1 paralogs

  1. Alexandra Van Hall-Beauvais
  2. Jesse R Poganik
  3. Kuan-Ting Huang
  4. Saba Parvez
  5. Yi Zhao
  6. Hong-Yu Lin
  7. Xuyu Liu
  8. Marcus John Curtis Long  Is a corresponding author
  9. Yimon Aye  Is a corresponding author
  1. École Polytechnique Fédérale de Lausanne, Switzerland
  2. Brigham and Women's Hospital, United States
  3. University of Utah, United States
  4. Xiamen University, China
  5. University of Sydney, Australia
  6. University of Lausanne, Switzerland

Abstract

Studying electrophile signaling is marred by difficulties in parsing changes in pathway flux attributable to on-target, vis-à-vis off-target, modifications. By combining bolus dosing, knockdown, and Z-REX-a tool investigating on-target/on-pathway electrophile signaling, we document that electrophile labeling of one zebrafish-Keap1-paralog (zKeap1b) stimulates Nrf2- driven antioxidant response (AR) signaling (like the human-ortholog). Conversely, zKeap1a is a dominant-negative regulator of electrophile-promoted Nrf2-signaling, and itself is nonpermissive for electrophile-induced Nrf2-upregulation. This behavior is recapitulated in human cells, wherein following electrophile treatment: (1) zKeap1b-transfected cells are permissive for augmented AR-signaling through reduced zKeap1b-Nrf2 binding; (2) zKeap1a-transfected cells are non-permissive for AR-upregulation, as zKeap1a-Nrf2 binding capacity remains unaltered; (3) 1:1 ZKeap1a:zKeap1b-transfected cells show no Nrf2-release from the Keap1-complex, rendering these cells unable to upregulate AR. We identified a zKeap1a-specific point-mutation (C273I) responsible for zKeap1a's behavior. Human-Keap1(C273I), of known diminished Nrf2-regulatory capacity, dominantly muted electrophile-induced Nrf2-signaling. These studies highlight divergent and interdependent electrophile signaling behaviors, despite conserved electrophile sensing.

Data availability

The data generated in this study using these materials are provided in Main Figure 1-8, accompanied by 17 associated Figure Supplements, and the Source Data Files associated with Main Figure 1-8 and 17 associated Figure Supplements.

Article and author information

Author details

  1. Alexandra Van Hall-Beauvais

    École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2515-5191
  2. Jesse R Poganik

    Department of Medicine, Brigham and Women's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Kuan-Ting Huang

    École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Saba Parvez

    Department of Pharmacology and Toxicology, University of Utah, Salt lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Yi Zhao

    École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6049-1943
  6. Hong-Yu Lin

    Department of Chemical Biology, Xiamen University, Xiamen, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Xuyu Liu

    School of Chemistry, University of Sydney, New South Wales, Australia
    Competing interests
    The authors declare that no competing interests exist.
  8. Marcus John Curtis Long

    Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
    For correspondence
    marcusjohncurtis.long@unil.ch
    Competing interests
    The authors declare that no competing interests exist.
  9. Yimon Aye

    École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    For correspondence
    yimon.aye@epfl.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1256-4159

Funding

Novartis FreeNovation

  • Yimon Aye

European Research Council

  • Yimon Aye

Swiss Federal Institute of Technology Lausanne

  • Yimon Aye

National Institutes of Health (NIH T32GM008500)

  • Jesse R Poganik

AHA predoctoral Fellowship (17PRE33670395)

  • Jesse R Poganik

HHMI International Fellow

  • Saba Parvez

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures performed at Cornell (2017-2018) and EPFL (2018-present) conform to the animal care, maintenance, and experimentation procedures followed by Cornell University's and EPFL's Institutional Animal Care and Use Committee (IACUC) guidelines and approved by the respective institutional committees. All experiments with zebrafish performed at EPFL (2018-present) have been performed in accordance with the Swiss regulations on Animal Experimentation (Animal Welfare Act SR 455 and Animal Welfare Ordinance SR 455.1), in the EPFL zebrafish unit, cantonal veterinary authorization VD-H23).

Reviewing Editor

  1. Jonathan A Cooper, Fred Hutchinson Cancer Research Center, United States

Publication history

  1. Received: September 9, 2022
  2. Accepted: October 12, 2022
  3. Accepted Manuscript published: October 27, 2022 (version 1)
  4. Accepted Manuscript updated: October 31, 2022 (version 2)

Copyright

© 2022, Van Hall-Beauvais et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 197
    Page views
  • 53
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alexandra Van Hall-Beauvais
  2. Jesse R Poganik
  3. Kuan-Ting Huang
  4. Saba Parvez
  5. Yi Zhao
  6. Hong-Yu Lin
  7. Xuyu Liu
  8. Marcus John Curtis Long
  9. Yimon Aye
(2022)
Z-REX uncovers a bifurcation in function of Keap1 paralogs
eLife 11:e83373.
https://doi.org/10.7554/eLife.83373

Further reading

    1. Biochemistry and Chemical Biology
    Ziyue Wang, Michael Mülleder ... Markus Ralser
    Research Article

    The possibility to record proteomes in high throughput and at high quality has opened new avenues for biomedical research, drug discovery, systems biology, and clinical translation. However, high-throughput proteomic experiments often require high sample amounts and can be less sensitive compared to conventional proteomic experiments. Here, we introduce and benchmark Zeno SWATH MS, a data-independent acquisition technique that employs a linear ion trap pulsing (Zeno trap pulsing) to increase the sensitivity in high-throughput proteomic experiments. We demonstrate that when combined with fast micro- or analytical flow-rate chromatography, Zeno SWATH MS increases protein identification with low sample amounts. For instance, using 20 min micro-flow-rate chromatography, Zeno SWATH MS identified more than 5000 proteins consistently, and with a coefficient of variation of 6%, from a 62.5 ng load of human cell line tryptic digest. Using 5 min analytical flow-rate chromatography (800 µl/min), Zeno SWATH MS identified 4907 proteins from a triplicate injection of 2 µg of a human cell lysate, or more than 3000 proteins from a 250 ng tryptic digest. Zeno SWATH MS hence facilitates sensitive high-throughput proteomic experiments with low sample amounts, mitigating the current bottlenecks of high-throughput proteomics.

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Jinli Geng, Yingjun Tang ... Xiaodong Liu
    Research Article Updated

    Dynamic Ca2+ signals reflect acute changes in membrane excitability, and also mediate signaling cascades in chronic processes. In both cases, chronic Ca2+ imaging is often desired, but challenged by the cytotoxicity intrinsic to calmodulin (CaM)-based GCaMP, a series of genetically-encoded Ca2+ indicators that have been widely applied. Here, we demonstrate the performance of GCaMP-X in chronic Ca2+ imaging of cortical neurons, where GCaMP-X by design is to eliminate the unwanted interactions between the conventional GCaMP and endogenous (apo)CaM-binding proteins. By expressing in adult mice at high levels over an extended time frame, GCaMP-X showed less damage and improved performance in two-photon imaging of sensory (whisker-deflection) responses or spontaneous Ca2+ fluctuations, in comparison with GCaMP. Chronic Ca2+ imaging of one month or longer was conducted for cultured cortical neurons expressing GCaMP-X, unveiling that spontaneous/local Ca2+ transients progressively developed into autonomous/global Ca2+ oscillations. Along with the morphological indices of neurite length and soma size, the major metrics of oscillatory Ca2+, including rate, amplitude and synchrony were also examined. Dysregulations of both neuritogenesis and Ca2+ oscillations became discernible around 2–3 weeks after virus injection or drug induction to express GCaMP in newborn or mature neurons, which were exacerbated by stronger or prolonged expression of GCaMP. In contrast, neurons expressing GCaMP-X were significantly less damaged or perturbed, altogether highlighting the unique importance of oscillatory Ca2+ to neural development and neuronal health. In summary, GCaMP-X provides a viable solution for Ca2+ imaging applications involving long-time and/or high-level expression of Ca2+ probes.