Experience transforms crossmodal object representations in the anterior temporal lobes

  1. Aedan Yue Li  Is a corresponding author
  2. Natalia Ladyka-Wojcik
  3. Heba Qazilbash
  4. Ali Golestani
  5. Dirk B Walther
  6. Chris B Martin
  7. Morgan Barense
  1. University of Toronto, Canada
  2. University of Calgary, Canada
  3. Florida State University, United States

Abstract

Combining information from multiple senses is essential to object recognition, core to the ability to learn concepts, make new inferences, and generalize across distinct entities. Yet how the mind combines sensory input into coherent crossmodal representations - the crossmodal binding problem - remains poorly understood. Here, we applied multi-echo fMRI across a four-day paradigm, in which participants learned 3-dimensional crossmodal representations created from well-characterized unimodal visual shape and sound features. Our novel paradigm decoupled the learned crossmodal object representations from their baseline unimodal shapes and sounds, thus allowing us to track the emergence of crossmodal object representations as they were learned by healthy adults. Critically, we found that two anterior temporal lobe structures - temporal pole and perirhinal cortex - differentiated learned from non-learned crossmodal objects, even when controlling for the unimodal features that composed those objects. These results provide evidence for integrated crossmodal object representations in the anterior temporal lobes that were different from the representations for the unimodal features. Furthermore, we found that perirhinal cortex representations were by default biased towards visual shape, but this initial visual bias was attenuated by crossmodal learning. Thus, crossmodal learning transformed perirhinal representations such that they were no longer predominantly grounded in the visual modality, which may be a mechanism by which object concepts gain their abstraction.

Data availability

Anonymized data are available on the Open Science Framework: https://osf.io/vq4wj/.Univariate maps are available on NeuroVault: https://neurovault.org/collections/LFDCGMAY/

The following data sets were generated

Article and author information

Author details

  1. Aedan Yue Li

    Department of Psychology, University of Toronto, Toronto, Canada
    For correspondence
    aedanyue.li@utoronto.ca
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0580-4676
  2. Natalia Ladyka-Wojcik

    Department of Psychology, University of Toronto, Toronto, Canada
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1218-0080
  3. Heba Qazilbash

    Department of Psychology, University of Toronto, Toronto, Canada
    Competing interests
    No competing interests declared.
  4. Ali Golestani

    Department of Physics and Astronomy, University of Calgary, Toronto, Canada
    Competing interests
    No competing interests declared.
  5. Dirk B Walther

    Department of Psychology, University of Toronto, Toronto, Canada
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8585-9858
  6. Chris B Martin

    Department of Psychology, Florida State University, Tallahasse, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7014-4371
  7. Morgan Barense

    Department of Psychology, University of Toronto, Toronto, Canada
    Competing interests
    Morgan Barense, Reviewing editor, eLife.

Funding

Natural Sciences and Engineering Research Council of Canada (Alexander Graham Bell Canada Graduate Scholarship-Doctoral)

  • Aedan Yue Li

Natural Sciences and Engineering Research Council of Canada (Discovery Grant (RGPIN-2020-05747))

  • Morgan Barense

James S. McDonnell Foundation (Scholar Award)

  • Morgan Barense

Canada Research Chairs

  • Morgan Barense

Ontario Ministry of Research and Innovation (Early Researcher Award)

  • Morgan Barense

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All experiments described in this study were approved by the University of Toronto Ethics Review Board: 37590. Informed consent was obtained for all participants in the study.

Copyright

© 2024, Li et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 793
    views
  • 148
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Aedan Yue Li
  2. Natalia Ladyka-Wojcik
  3. Heba Qazilbash
  4. Ali Golestani
  5. Dirk B Walther
  6. Chris B Martin
  7. Morgan Barense
(2024)
Experience transforms crossmodal object representations in the anterior temporal lobes
eLife 13:e83382.
https://doi.org/10.7554/eLife.83382

Share this article

https://doi.org/10.7554/eLife.83382

Further reading

    1. Neuroscience
    Lian Hollander-Cohen, Omer Cohen ... Berta Levavi-Sivan
    Research Article

    Life histories of oviparous species dictate high metabolic investment in the process of gonadal development leading to ovulation. In vertebrates, these two distinct processes are controlled by the gonadotropins follicle-stimulating hormone (FSH) and luteinizing hormone (LH), respectively. While it was suggested that a common secretagogue, gonadotropin-releasing hormone (GnRH), oversees both functions, the generation of loss-of-function fish challenged this view. Here, we reveal that the satiety hormone cholecystokinin (CCK) is the primary regulator of this axis in zebrafish. We found that FSH cells express a CCK receptor, and our findings demonstrate that mutating this receptor results in a severe hindrance to ovarian development. Additionally, it causes a complete shutdown of both gonadotropins secretion. Using in-vivo and ex-vivo calcium imaging of gonadotrophs, we show that GnRH predominantly activates LH cells, whereas FSH cells respond to CCK stimulation, designating CCK as the bona fide FSH secretagogue. These findings indicate that the control of gametogenesis in fish was placed under different neural circuits, that are gated by CCK.

    1. Neuroscience
    Lina María Jaime Tobón, Tobias Moser
    Research Article

    Neural diversity can expand the encoding capacity of a circuitry. A striking example of diverse structure and function is presented by the afferent synapses between inner hair cells (IHCs) and spiral ganglion neurons (SGNs) in the cochlea. Presynaptic active zones at the pillar IHC side activate at lower IHC potentials than those of the modiolar side that have more presynaptic Ca2+ channels. The postsynaptic SGNs differ in their spontaneous firing rates, sound thresholds, and operating ranges. While a causal relationship between synaptic heterogeneity and neural response diversity seems likely, experimental evidence linking synaptic and SGN physiology has remained difficult to obtain. Here, we aimed at bridging this gap by ex vivo paired recordings of murine IHCs and postsynaptic SGN boutons with stimuli and conditions aimed to mimic those of in vivo SGN characterization. Synapses with high spontaneous rate of release (SR) were found predominantly on the pillar side of the IHC. These high SR synapses had larger and more temporally compact spontaneous EPSCs, lower voltage thresholds, tighter coupling of Ca2+ channels and vesicular release sites, shorter response latencies, and higher initial release rates. This study indicates that synaptic heterogeneity in IHCs directly contributes to the diversity of spontaneous and sound-evoked firing of SGNs.