Pericytes control vascular stability and auditory spiral ganglion neuron survival

  1. Yunpei Zhang
  2. Lingling Neng
  3. Kushal Sharma
  4. Zhiqiang Hou
  5. Anatasiya Johnson
  6. Junha Song
  7. Alain Dabdoub
  8. Xiaorui Shi  Is a corresponding author
  1. Oregon Health & Science University, United States
  2. Lawrence Berkeley National Laboratory, United States
  3. Sunnybrook Research Institute, Canada

Abstract

The inner ear has a rich population of pericytes, a multi-functional mural cell essential for sensory hair cell heath and normal hearing. However, the mechanics of how pericytes contribute to the homeostasis of the auditory vascular-neuronal complex in the spiral ganglion is not yet known. In this study, using an inducible and conditional pericyte depletion mouse (PDGFRB-CreERT2; ROSA26iDTR) model, we demonstrate, for the first time, that pericyte depletion causes loss of vascular volume and spiral ganglion neurons (SGNs) and adversely affects hearing sensitivity. Using an in vitro trans-well co-culture system, we show pericytes markedly promote neurite and vascular branch growth in neonatal SGN explants and adult SGNs. The pericyte-controlled neural growth is strongly mediated by pericyte-released exosomes containing vascular endothelial growth factor-A (VEGF-A). Treatment of neonatal SGN explants or adult SGNs with pericyte-derived exosomes significantly enhances angiogenesis, SGN survival, and neurite growth, all of which were inhibited by a selective blocker of VEGF receptor 2 (Flk1). Our study demonstrates that pericytes in the adult ear are critical for vascular stability and SGN health. Cross-talk between pericytes and SGNs via exosomes is essential for neuronal and vascular health and normal hearing.

Data availability

Table 1 - Source Data 1 contains the RNA sequencing data used to generate Table 1 and Figure 5A. Figure 6 - Source Data 1 contains the proteomics data used to generate Figure 6 and Table 2. Figure 7 - Source Data 1 & 2 contains the original uncropped blots of VEGFA and PDGFR-β, and raw gel data of whole protein staining with the relevant bands clearly labelled.

Article and author information

Author details

  1. Yunpei Zhang

    Department of Otolaryngology/Head and Neck Surgery, Oregon Health & Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5254-796X
  2. Lingling Neng

    Department of Otolaryngology/Head and Neck Surgery, Oregon Health & Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Kushal Sharma

    Department of Otolaryngology/Head and Neck Surgery, Oregon Health & Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Zhiqiang Hou

    Department of Otolaryngology/Head and Neck Surgery, Oregon Health & Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5154-7474
  5. Anatasiya Johnson

    Department of Otolaryngology/Head and Neck Surgery, Oregon Health & Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Junha Song

    Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Alain Dabdoub

    Biological Sciences, Sunnybrook Research Institute, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4259-2425
  8. Xiaorui Shi

    Department of Otolaryngology/Head and Neck Surgery, Oregon Health & Science University, Portland, United States
    For correspondence
    shix@ohsu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6068-1413

Funding

National Institute on Deafness and Other Communication Disorders (R01 DC015781)

  • Xiaorui Shi

National Institute on Deafness and Other Communication Disorders (R01-DC010844)

  • Xiaorui Shi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Gou Young Koh, Institute of Basic Science and Korea Advanced Institute of Science and Technology (KAIST), Korea (South), Republic of

Ethics

Animal experimentation: All animal experiments reported were approved by the Oregon Health & Science University Institutional Animal Care and Use Committee (IACUC IP00000968).

Version history

  1. Received: September 15, 2022
  2. Preprint posted: September 28, 2022 (view preprint)
  3. Accepted: January 26, 2023
  4. Accepted Manuscript published: January 31, 2023 (version 1)
  5. Version of Record published: February 20, 2023 (version 2)
  6. Version of Record updated: March 13, 2023 (version 3)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,602
    views
  • 313
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yunpei Zhang
  2. Lingling Neng
  3. Kushal Sharma
  4. Zhiqiang Hou
  5. Anatasiya Johnson
  6. Junha Song
  7. Alain Dabdoub
  8. Xiaorui Shi
(2023)
Pericytes control vascular stability and auditory spiral ganglion neuron survival
eLife 12:e83486.
https://doi.org/10.7554/eLife.83486

Share this article

https://doi.org/10.7554/eLife.83486

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Lucie Crhak Khaitova, Pavlina Mikulkova ... Karel Riha
    Research Article

    Heat stress is a major threat to global crop production, and understanding its impact on plant fertility is crucial for developing climate-resilient crops. Despite the known negative effects of heat stress on plant reproduction, the underlying molecular mechanisms remain poorly understood. Here, we investigated the impact of elevated temperature on centromere structure and chromosome segregation during meiosis in Arabidopsis thaliana. Consistent with previous studies, heat stress leads to a decline in fertility and micronuclei formation in pollen mother cells. Our results reveal that elevated temperature causes a decrease in the amount of centromeric histone and the kinetochore protein BMF1 at meiotic centromeres with increasing temperature. Furthermore, we show that heat stress increases the duration of meiotic divisions and prolongs the activity of the spindle assembly checkpoint during meiosis I, indicating an impaired efficiency of the kinetochore attachments to spindle microtubules. Our analysis of mutants with reduced levels of centromeric histone suggests that weakened centromeres sensitize plants to elevated temperature, resulting in meiotic defects and reduced fertility even at moderate temperatures. These results indicate that the structure and functionality of meiotic centromeres in Arabidopsis are highly sensitive to heat stress, and suggest that centromeres and kinetochores may represent a critical bottleneck in plant adaptation to increasing temperatures.

    1. Cell Biology
    Wan-ping Yang, Mei-qi Li ... Qian-qian Luo
    Research Article

    High-altitude polycythemia (HAPC) affects individuals living at high altitudes, characterized by increased red blood cells (RBCs) production in response to hypoxic conditions. The exact mechanisms behind HAPC are not fully understood. We utilized a mouse model exposed to hypobaric hypoxia (HH), replicating the environmental conditions experienced at 6000 m above sea level, coupled with in vitro analysis of primary splenic macrophages under 1% O2 to investigate these mechanisms. Our findings indicate that HH significantly boosts erythropoiesis, leading to erythrocytosis and splenic changes, including initial contraction to splenomegaly over 14 days. A notable decrease in red pulp macrophages (RPMs) in the spleen, essential for RBCs processing, was observed, correlating with increased iron release and signs of ferroptosis. Prolonged exposure to hypoxia further exacerbated these effects, mirrored in human peripheral blood mononuclear cells. Single-cell sequencing showed a marked reduction in macrophage populations, affecting the spleen’s ability to clear RBCs and contributing to splenomegaly. Our findings suggest splenic ferroptosis contributes to decreased RPMs, affecting erythrophagocytosis and potentially fostering continuous RBCs production in HAPC. These insights could guide the development of targeted therapies for HAPC, emphasizing the importance of splenic macrophages in disease pathology.