Pericytes control vascular stability and auditory spiral ganglion neuron survival

  1. Yunpei Zhang
  2. Lingling Neng
  3. Kushal Sharma
  4. Zhiqiang Hou
  5. Anatasiya Johnson
  6. Junha Song
  7. Alain Dabdoub
  8. Xiaorui Shi  Is a corresponding author
  1. Oregon Health & Science University, United States
  2. Lawrence Berkeley National Laboratory, United States
  3. Sunnybrook Research Institute, Canada

Abstract

The inner ear has a rich population of pericytes, a multi-functional mural cell essential for sensory hair cell heath and normal hearing. However, the mechanics of how pericytes contribute to the homeostasis of the auditory vascular-neuronal complex in the spiral ganglion is not yet known. In this study, using an inducible and conditional pericyte depletion mouse (PDGFRB-CreERT2; ROSA26iDTR) model, we demonstrate, for the first time, that pericyte depletion causes loss of vascular volume and spiral ganglion neurons (SGNs) and adversely affects hearing sensitivity. Using an in vitro trans-well co-culture system, we show pericytes markedly promote neurite and vascular branch growth in neonatal SGN explants and adult SGNs. The pericyte-controlled neural growth is strongly mediated by pericyte-released exosomes containing vascular endothelial growth factor-A (VEGF-A). Treatment of neonatal SGN explants or adult SGNs with pericyte-derived exosomes significantly enhances angiogenesis, SGN survival, and neurite growth, all of which were inhibited by a selective blocker of VEGF receptor 2 (Flk1). Our study demonstrates that pericytes in the adult ear are critical for vascular stability and SGN health. Cross-talk between pericytes and SGNs via exosomes is essential for neuronal and vascular health and normal hearing.

Data availability

Table 1 - Source Data 1 contains the RNA sequencing data used to generate Table 1 and Figure 5A. Figure 6 - Source Data 1 contains the proteomics data used to generate Figure 6 and Table 2. Figure 7 - Source Data 1 & 2 contains the original uncropped blots of VEGFA and PDGFR-β, and raw gel data of whole protein staining with the relevant bands clearly labelled.

Article and author information

Author details

  1. Yunpei Zhang

    Department of Otolaryngology/Head and Neck Surgery, Oregon Health & Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5254-796X
  2. Lingling Neng

    Department of Otolaryngology/Head and Neck Surgery, Oregon Health & Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Kushal Sharma

    Department of Otolaryngology/Head and Neck Surgery, Oregon Health & Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Zhiqiang Hou

    Department of Otolaryngology/Head and Neck Surgery, Oregon Health & Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5154-7474
  5. Anatasiya Johnson

    Department of Otolaryngology/Head and Neck Surgery, Oregon Health & Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Junha Song

    Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Alain Dabdoub

    Biological Sciences, Sunnybrook Research Institute, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4259-2425
  8. Xiaorui Shi

    Department of Otolaryngology/Head and Neck Surgery, Oregon Health & Science University, Portland, United States
    For correspondence
    shix@ohsu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6068-1413

Funding

National Institute on Deafness and Other Communication Disorders (R01 DC015781)

  • Xiaorui Shi

National Institute on Deafness and Other Communication Disorders (R01-DC010844)

  • Xiaorui Shi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments reported were approved by the Oregon Health & Science University Institutional Animal Care and Use Committee (IACUC IP00000968).

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,115
    views
  • 408
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yunpei Zhang
  2. Lingling Neng
  3. Kushal Sharma
  4. Zhiqiang Hou
  5. Anatasiya Johnson
  6. Junha Song
  7. Alain Dabdoub
  8. Xiaorui Shi
(2023)
Pericytes control vascular stability and auditory spiral ganglion neuron survival
eLife 12:e83486.
https://doi.org/10.7554/eLife.83486

Share this article

https://doi.org/10.7554/eLife.83486

Further reading

    1. Cell Biology
    Chengfang Pan, Ying Liu ... Changlong Hu
    Research Article

    Prostaglandin E2 (PGE2) is an endogenous inhibitor of glucose-stimulated insulin secretion (GSIS) and plays an important role in pancreatic β-cell dysfunction in type 2 diabetes mellitus (T2DM). This study aimed to explore the underlying mechanism by which PGE2 inhibits GSIS. Our results showed that PGE2 inhibited Kv2.2 channels via increasing PKA activity in HEK293T cells overexpressed with Kv2.2 channels. Point mutation analysis demonstrated that S448 residue was responsible for the PKA-dependent modulation of Kv2.2. Furthermore, the inhibitory effect of PGE2 on Kv2.2 was blocked by EP2/4 receptor antagonists, while mimicked by EP2/4 receptor agonists. The immune fluorescence results showed that EP1–4 receptors are expressed in both mouse and human β-cells. In INS-1(832/13) β-cells, PGE2 inhibited voltage-gated potassium currents and electrical activity through EP2/4 receptors and Kv2.2 channels. Knockdown of Kcnb2 reduced the action potential firing frequency and alleviated the inhibition of PGE2 on GSIS in INS-1(832/13) β-cells. PGE2 impaired glucose tolerance in wild-type mice but did not alter glucose tolerance in Kcnb2 knockout mice. Knockout of Kcnb2 reduced electrical activity, GSIS and abrogated the inhibition of PGE2 on GSIS in mouse islets. In conclusion, we have demonstrated that PGE2 inhibits GSIS in pancreatic β-cells through the EP2/4-Kv2.2 signaling pathway. The findings highlight the significant role of Kv2.2 channels in the regulation of β-cell repetitive firing and insulin secretion, and contribute to the understanding of the molecular basis of β-cell dysfunction in diabetes.

    1. Cell Biology
    Ryan M Finnerty, Daniel J Carulli ... Wipawee Winuthayanon
    Research Article

    The oviduct is the site of fertilization and preimplantation embryo development in mammals. Evidence suggests that gametes alter oviductal gene expression. To delineate the adaptive interactions between the oviduct and gamete/embryo, we performed a multi-omics characterization of oviductal tissues utilizing bulk RNA-sequencing (RNA-seq), single-cell RNA-sequencing (scRNA-seq), and proteomics collected from distal and proximal at various stages after mating in mice. We observed robust region-specific transcriptional signatures. Specifically, the presence of sperm induces genes involved in pro-inflammatory responses in the proximal region at 0.5 days post-coitus (dpc). Genes involved in inflammatory responses were produced specifically by secretory epithelial cells in the oviduct. At 1.5 and 2.5 dpc, genes involved in pyruvate and glycolysis were enriched in the proximal region, potentially providing metabolic support for developing embryos. Abundant proteins in the oviductal fluid were differentially observed between naturally fertilized and superovulated samples. RNA-seq data were used to identify transcription factors predicted to influence protein abundance in the proteomic data via a novel machine learning model based on transformers of integrating transcriptomics and proteomics data. The transformers identified influential transcription factors and correlated predictive protein expressions in alignment with the in vivo-derived data. Lastly, we found some differences between inflammatory responses in sperm-exposed mouse oviducts compared to hydrosalpinx Fallopian tubes from patients. In conclusion, our multi-omics characterization and subsequent in vivo confirmation of proteins/RNAs indicate that the oviduct is adaptive and responsive to the presence of sperm and embryos in a spatiotemporal manner.