Context-dependent requirement of G protein coupling for Latrophilin-2 in target selection of hippocampal axons

  1. Daniel T Pederick
  2. Nicole A Perry-Hauser
  3. Huyan Meng
  4. Zhigang He
  5. Jonathan A Javitch  Is a corresponding author
  6. Liqun Luo  Is a corresponding author
  1. Howard Hughes Medical Institute, Stanford University, United States
  2. Columbia University, United States
  3. Boston Children's Hospital, United States

Abstract

The formation of neural circuits requires extensive interactions of cell-surface proteins to guide axons to their correct target neurons. Trans-cellular interactions of the adhesion G protein-coupled receptor latrophilin-2 (Lphn2) with its partner teneurin-3 instruct the precise assembly of hippocampal networks by reciprocal repulsion. Lphn2 acts as a repulsive receptor in distal CA1 neurons to direct their axons to proximal subiculum, and as a repulsive ligand in proximal subiculum to direct proximal CA1 axons to distal subiculum. It remains unclear if Lphn2-mediated intracellular signaling is required for its role in either context. Here, we show that Lphn2 couples to Gα12/13 in heterologous cells; this coupling is increased by constitutive exposure of the tethered agonist. Specific mutations of Lphn2's tethered agonist region disrupt its G protein coupling and autoproteolytic cleavage, whereas mutating the autoproteolytic cleavage site alone prevents cleavage but preserves a functional tethered agonist. Using an in vivo misexpression assay, we demonstrate that wild-type Lphn2 misdirects proximal CA1 axons to proximal subiculum and that Lphn2 tethered agonist activity is required for its role as a repulsive receptor in axons. By contrast, neither tethered agonist activity nor autoproteolysis was necessary for Lphn2's role as a repulsive ligand in the subiculum target neurons. Thus, tethered agonist activity is required for Lphn2-mediated neural circuit assembly in a context-dependent manner.

Data availability

All materials are available through requests to the corresponding author. All custom code was identical to reported in (Pederick et al., 2021) and can be accessed at https://github.com/dpederick/Reciprocal-repulsions-instruct-the-precise-assembly-of-parallel-hippocampal-networks/tree/1. All data generated or analyzed during this study are included in the manuscript and supporting file; Source Data files have been provided for all Figures.

Article and author information

Author details

  1. Daniel T Pederick

    Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Nicole A Perry-Hauser

    Department of Psychiatry, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Huyan Meng

    Department of Neurology, Boston Children's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1511-6156
  4. Zhigang He

    Department of Neurology, Boston Children's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jonathan A Javitch

    Department of Psychiatry, Columbia University, New York, United States
    For correspondence
    jaj2@cumc.columbia.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7395-2967
  6. Liqun Luo

    Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
    For correspondence
    lluo@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5467-9264

Funding

National Institutes of Health (T32-MH015144)

  • Nicole A Perry-Hauser

National Institutes of Health (R01-NS050835)

  • Liqun Luo

National Institutes of Health (R01-MH54137)

  • Jonathan A Javitch

Hope for Depression Research Foundation

  • Jonathan A Javitch

National Institutes of Health (P30EY012196)

  • Zhigang He

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures followed animal care and biosafety guidelines approved by Stanford University's Administrative Panel on Laboratory Animal Care (APLAC 14007) and Administrative Panel on Biosafety (APB-3669-LL120) in accordance with NIH guidelines.

Copyright

© 2023, Pederick et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,092
    views
  • 320
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Daniel T Pederick
  2. Nicole A Perry-Hauser
  3. Huyan Meng
  4. Zhigang He
  5. Jonathan A Javitch
  6. Liqun Luo
(2023)
Context-dependent requirement of G protein coupling for Latrophilin-2 in target selection of hippocampal axons
eLife 12:e83529.
https://doi.org/10.7554/eLife.83529

Share this article

https://doi.org/10.7554/eLife.83529

Further reading

    1. Cell Biology
    2. Developmental Biology
    Sofía Suárez Freire, Sebastián Perez-Pandolfo ... Mariana Melani
    Research Article

    Eukaryotic cells depend on exocytosis to direct intracellularly synthesized material toward the extracellular space or the plasma membrane, so exocytosis constitutes a basic function for cellular homeostasis and communication between cells. The secretory pathway includes biogenesis of secretory granules (SGs), their maturation and fusion with the plasma membrane (exocytosis), resulting in release of SG content to the extracellular space. The larval salivary gland of Drosophila melanogaster is an excellent model for studying exocytosis. This gland synthesizes mucins that are packaged in SGs that sprout from the trans-Golgi network and then undergo a maturation process that involves homotypic fusion, condensation, and acidification. Finally, mature SGs are directed to the apical domain of the plasma membrane with which they fuse, releasing their content into the gland lumen. The exocyst is a hetero-octameric complex that participates in tethering of vesicles to the plasma membrane during constitutive exocytosis. By precise temperature-dependent gradual activation of the Gal4-UAS expression system, we have induced different levels of silencing of exocyst complex subunits, and identified three temporarily distinctive steps of the regulated exocytic pathway where the exocyst is critically required: SG biogenesis, SG maturation, and SG exocytosis. Our results shed light on previously unidentified functions of the exocyst along the exocytic pathway. We propose that the exocyst acts as a general tethering factor in various steps of this cellular process.

    1. Cell Biology
    2. Developmental Biology
    Heungjin Ryu, Kibum Nam ... Jung-Hoon Park
    Research Article

    In most murine species, spermatozoa exhibit a falciform apical hook at the head end. The function of the sperm hook is not yet clearly understood. In this study, we investigate the role of the sperm hook in the migration of spermatozoa through the female reproductive tract in Mus musculus (C57BL/6), using a deep tissue imaging custom-built two-photon microscope. Through live reproductive tract imaging, we found evidence indicating that the sperm hook aids in the attachment of spermatozoa to the epithelium and facilitates interactions between spermatozoa and the epithelium during migration in the uterus and oviduct. We also observed synchronized sperm beating, which resulted from the spontaneous unidirectional rearrangement of spermatozoa in the uterus. Based on live imaging of spermatozoa-epithelium interaction dynamics, we propose that the sperm hook plays a crucial role in successful migration through the female reproductive tract by providing anchor-like mechanical support and facilitating interactions between spermatozoa and the female reproductive tract in the house mouse.