A concerted mechanism involving ACAT and SREBPs by which oxysterols deplete accessible cholesterol to restrict microbial infection

  1. David B Heisler
  2. Kristen A Johnson
  3. Duo H Ma
  4. Maikke B Ohlson
  5. Lishu Zhang
  6. Michelle Tran
  7. Chase D Corley
  8. Michael E Abrams
  9. Jeffrey G McDonald
  10. John W Schoggins
  11. Neal M Alto  Is a corresponding author
  12. Arun Radhakrishnan  Is a corresponding author
  1. Department of Microbiology, The University of Texas Southwestern Medical Center, United States
  2. Department of Molecular Genetics, The University of Texas Southwestern Medical Center, United States
8 figures, 1 table and 1 additional file

Figures

Figure 1 with 5 supplements
Comparison of oxysterol specificities for effects on PM cholesterol pools, stimulation of ACAT activity, and suppression of SREBP-2 cleavage.

(A, B) Time course and dose curve analysis of 25HC treatment. On day 0, CHO-K1 cells were set up in medium B at a density of 6x104 cells per well of a 48-well plate. On day 1, media was removed, cells were washed twice with 500 µl of PBS followed by addition of 200 µl of medium B supplemented with either 5 µM of 25HC (A) or the indicated concentrations of 25HC (B). After incubation at 37 °C for either the indicated times (A) or 4 h (B), media was removed and replaced with 200 µl of medium B supplemented with 3 µM His6-Flag-ALOD4. After incubation at 37 °C for 30 min, cells were washed twice with 500 µl of PBS, harvested, and equal aliquots of cell lysates were subjected to immunoblot analysis as described in Materials and Methods. (C) Chemical structures of oxysterols tested in this study. Differences from cholesterol are highlighted in red. (D, E) Effects on PM cholesterol pools. On day 0, CHO-K1 cells were set up in medium B at a density of 6x104 cells per well of a 48-well plate. On day 1, media was removed, cells were washed twice with 500 µl of PBS followed by addition of 200 µl of medium B supplemented with 5 µM of the indicated oxysterol. After incubation at 37 °C for 4 hr, media was removed and replaced with 200 µl of medium B supplemented with 3 µM of either His6-Flag-ALOD4 (D, top panel) or OlyA-His6 (E, top panel). After incubation at 37 °C for 30 min, cells were washed twice with 500 µl of PBS, harvested, and equal aliquots of cell lysates were subjected to immunoblot analysis as described in Materials and methods. Quantification of the immunoblots are shown in Figure 1—figure supplement 1. (F) ACAT activity. On day 0, CHO-K1 cells were set up in medium B at a density of 2.5x105 cells per 60 mm dish. On day 2, media was removed, cells were washed twice with 1 ml of PBS followed by addition of 2 ml of cholesterol-depleting medium C. On day 3, media was removed, cells were washed with 1 ml of PBS followed by addition of 1 ml of medium C supplemented with 5 µM of the indicated oxysterol. After incubation at 37 °C for 1 hr, each dish was supplemented with 0.2 mM sodium [14C]oleate (6500 dpm/nmol) and incubated at 37 °C for an additional 2 hr, after which cells were harvested, and levels of cholesteryl [14C]oleate were measured as described in Materials and methods. Each column represents the mean of cholesterol esterification measurements from three or more independent experiments, and error bars show the standard error. The mean value for cholesterol esterification obtained after 25HC treatment (3.18 nmol/mg/h; n=6; standard error = ± 0.49 nmol/mg/h) was set to 1 and all other values were normalized relative to this set-point. (G) SREBP-2 cleavage. On day 0, CHO-K1 cells were set up in medium B at a density of 6x104 cells per well of a 48-well plate. On day 1, media was removed, cells were washed twice with 500 µl of PBS followed by addition of 200 µl of cholesterol-depleting medium C supplemented with 1% (w/v) HPCD. After incubation at 37 °C for 1 hr, media was removed, cells were washed twice with 500 µl of PBS and then treated with 200 µl of medium C supplemented with 5 µM of the indicated oxysterol. After incubation at 37 °C for 4 hr, cells were washed twice with 500 µl of PBS, harvested, and equal aliquots of cell lysates were subjected to immunoblot analysis as described in Materials and Methods. P, precursor form of SREBP2; N, cleaved nuclear form of SREBP2. Quantification of the immunoblots are shown in Figure 1—figure supplement 5. (H) Summary of oxysterol specificities for depletion of accessible cholesterol from PMs, suppression of SREBP2 cleavage, activation of LXR transcription factors, and stimulation of ACAT activity. The degree of effect (maximal or minimal) is denoted by +and –, respectively. Specificities that are different from that for depletion of accessible cholesterol from PMs (first row) are shaded red.

Figure 1—figure supplement 1
Comparison of effects of oxysterols on PM cholesterol pools – immunoblot analysis.

(A) Schematic of protein sensors used to monitor changes in PM cholesterol pools. (B, C) Quantification of immunoblot analysis shown in Figure 1D and E. The intensities of bands corresponding to bound His6-FLAG-ALOD4 (B) and bound OlyA-His6 (C) were quantified by densitometry and normalized to cellular actin levels as described in Materials and methods. The intensity values for ethanol (vehicle)-treated cells (lane 1 in Figure 1D and E) were set to 100 and all other values were normalized relative to this set-point. Each column represents the average values obtained from three independent experiments (the ones shown in Figure 1D and E along with two other experiments conducted in the same manner) and error bars indicate the standard error.

Figure 1—figure supplement 2
Comparison of effects of oxysterols on PM cholesterol pools – fluorescence microscopy analysis.

On day 0, CHO-K1 cells were set up in medium B at a density of 3x104 cells per well of an 8-well Lab-Tek II chambered #1.5 coverglass dish. On day 1, media was removed, cells were washed twice with 500 µl of PBS followed by addition of 200 µl of medium B supplemented with 5 µM of the indicated oxysterol (listed in Figure 1C). After incubation at 37 °C for 4 hr, media was removed and replaced with 200 µl of medium B supplemented with 3 µM fALOD4-Neon and 3 µM fOlyA-647. After incubation at 37 °C for 30 min, media was removed, cells were washed twice with 500 µl of PBS, fixed, stained with DAPI, and imaged as described in Materials and methods. Scale bar, 25 µm.

Figure 1—figure supplement 3
Comparison of effects of oxysterols on accessible PM cholesterol levels – immunoblot analysis.

On day 0, CHO-K1 cells were set up in medium B at a density of 6x104 cells per well of a 48-well plate. On day 1, media was removed, cells were washed twice with 500 µl of PBS followed by addition of 200 µl of medium B supplemented with either varying concentrations (A) or 5 µM (B) of the indicated oxysterol (listed in Figure 1C). After incubation at 37 °C for either 4 hr (A) or for the indicated times (B), media was removed and replaced with 200 µl of medium B supplemented with 3 µM His6-Flag-ALOD4. After incubation at 37 °C for 30 min, cells were washed twice with 500 µl of PBS and harvested, after which equal aliquots of cell lysates were subjected to immunoblot analysis as described in Materials and methods. The immunoblot signals for bound ALOD4 and cellular actin after treatment with various oxysterols, examples of which are shown in Figure 1A and B for oxysterol (I), were then quantified as described in Materials and methods. Data points represent the mean of 3–6 experiments and error bars show the standard error.

Figure 1—figure supplement 4
Treatment of red blood cells with oxysterols does not affect levels of accessible cholesterol in their membranes.

(A, B) Each binding assay contained 500 µl of rabbit red blood cells (RBCs) that had been washed and diluted as described in Materials and methods. RBCs were then subjected to one of the following treatments at room temperature (RT): (i) incubation for 4 hr without or with 5 µM of the indicated oxysterol (listed in Figure 1C); or (ii) incubation for 1 h with 1% (w/v) HPCD (in buffer F). After the indicated treatments, RBCs were incubated with 1 µM of fALOD4-Neon for 30 min at RT, following which FACS analysis was carried out as described in Materials and methods. Representative flow cytometry analysis of fALOD4-Neon binding to 10,000 RBCs are shown in (A) and the rectangular boxes represent fALOD4-Neon-bound RBCs. The geometric mean fluorescence intensity (gMFI) of Neon fluorescence from three independent experiments are shown in (B). Each column in (B) represents the mean of 3 independent experiments and error bars indicate the standard error. The mean gMFI value obtained for binding of fALOD4-Neon to RBCs in the absence of oxysterol treatment for each experiment (top left panel in A) was set to 100 and all other values were normalized to this set-point.

Figure 1—figure supplement 5
Quantification of immunoblot analysis shown in Figure 1G.

The intensities of bands corresponding to nuclear SREBP2 in Figure 1G were quantified by densitometry and normalized to cellular actin levels as described in Materials and methods. The intensity values for ethanol (vehicle)-treated cells (lane 1 in Figure 1G) were set to 100 and all other values were normalized relative to this set-point. Each column represents the average values obtained from three independent experiments (the one shown in Figure 1G along with two other experiments conducted in the same manner) and error bars indicate the standard error.

Figure 2 with 5 supplements
25HC fails to trigger rapid depletion of accessible cholesterol from PMs of ACAT-deficient cells.

(A) Immunoblot analysis of ALOD4 binding. On day 0, the indicated versions of CHO-K1 cells were set up in medium B at a density of 6x104 cells per well of a 48-well plate. On day 1, media was removed, cells were washed twice with 500 µl of PBS followed by addition of 200 µl of medium B supplemented with the indicated concentrations of either 25HC or 4HC. After incubation at 37 °C for 4 hr, media was removed and replaced with 200 µl of medium B supplemented with 3 µM His6-Flag-ALOD4. After incubation at 37 °C for 30 min, cells were washed twice with 500 µl of PBS, harvested, and equal aliquots of cell lysates were subjected to immunoblot analysis as described in Materials and methods. Quantification of the immunoblots are shown in Figure 2—figure supplement 2. (B) Fluorescence microscopy analysis of ALOD4 and OlyA binding. On day 0, the indicated versions of CHO-K1 cells were set up in medium B at a density of 3x104 cells per well of an eight-well Lab-Tek II chambered #1.5 coverglass dish. On day 1, media was removed, cells were washed twice with 500 µl of PBS followed by addition of 200 µl of medium B supplemented with the indicated concentration of 25HC. After incubation at 37 °C for 4 hr, media was removed and replaced with 200 µl of medium B supplemented with 3 µM of either fALOD4-Neon or fOlyA-647. After incubation at 37 °C for 30 min, media was removed, cells were washed twice with 500 µl of PBS, fixed, stained with DAPI, and imaged as described in Materials and methods. Scale bar, 25 µm. (C, D) Effects of 25HC on PM cholesterol pools in cells lacking Scap or LXR transcription factors. On day 0, the indicated cell lines were set up in either medium B (C) or medium D (D) at a density of 6x104 cells per well of a 48-well plate. On day 1, media was removed, cells were washed twice with 500 µl of PBS followed by addition of 200 µl of media supplemented with the indicated concentrations of either 25HC (lanes 1–6) or 4HC (lane 7). After incubation at 37 °C for 4 hr, media was removed and replaced with 200 µl of media supplemented with 3 µM of either His6-Flag-ALOD4 (left panels) or OlyA-His6 (right panels). After incubation at 37 °C for 30 min, cells were washed twice with 500 µl of PBS, harvested, and equal aliquots of cell lysates were subjected to immunoblot analysis as described in Materials and methods. Quantification of the immunoblots are shown in Figure 2—figure supplement 5.

Figure 2—figure supplement 1
Characterization of a CHO-K1 cell line deficient in ACAT1.

(A) Strategy for generating ACAT1-deficient CHO-K1 cells using CRISPR-Cas9 technology. Two guide RNAs were designed to target and disrupt exons 2 and 14 of hamster ACAT1 (also designated as Soat1). The 20-nucleotide target sequence is shown in green and the NGG PAM sequence is in purple. Genomic sequencing revealed no disruptions to exon 2 and a 4 bp deletion in exon 14 (red box) that resulted in a truncated transcript encoding amino acids 1–461 of ACAT1 followed by two residues (red) and a stop codon (*). (B, C) Immunoblot analysis. On day 0, the indicated versions of CHO-K1 cells were set up in medium B at a density of 6x104 cells per well of a 48-well plate. On day 1, media was removed, cells were washed twice with 500 µl of PBS, harvested, and equal aliquots of cell lysates were subjected to immunoblot analysis as described in Materials and methods. (D) ACAT activity. On day 0, the indicated versions of CHO-K1 cells were set up in medium B at a density of 2.5x105 cells per 60 mm dish. On day 2, media was removed, cells were washed twice with 1 ml of PBS followed by addition of 2 ml of cholesterol-depleting medium C. On day 3, media was removed, cells were washed with 1 ml of PBS followed by addition of 1 ml of medium C supplemented with the indicated concentration of 25HC. After incubation at 37 °C for 1 hr, each dish was supplemented with 0.2 mM sodium [14C]oleate (6500 dpm/nmol) and incubated at 37 °C for an additional 2 hr, after which cells were harvested, and levels of cholesteryl [14C]oleate were measured as described in Materials and methods. Each column represents the mean of cholesterol esterification measurements from three experiments, and error bars show the standard error.

Figure 2—figure supplement 2
Quantification of immunoblot analysis shown in Figure 2A.

The intensities of bands corresponding to bound His6-FLAG-ALOD4 in Figure 2A were quantified by densitometry and normalized to cellular actin levels as described in Materials and Methods. The intensity values for the zero 25HC concentration point (lane 1 in all panels of Figure 2A) were set to 100 and all other values were normalized relative to this set-point. Each data point represents the average values obtained from three independent experiments (the one shown in Figure 2A along with two other experiments conducted in the same manner) and error bars indicate the standard error.

Figure 2—figure supplement 3
Effects of 25HC on SREBP2 processing in ACAT-deficient cells.

On day 0, the indicated versions of CHO-K1 cells were set up in medium B at a density of 6x104 cells per well of a 48-well plate. On day 1, media was removed, cells were washed twice with 500 µl of PBS followed by addition of 200 µl of medium C supplemented with 1% (w/v) HPCD. After incubation at 37 °C for 1 hr, media was removed, cells were washed twice with 500 µl of PBS followed by addition of 200 µl of medium C supplemented with the indicated concentrations of 25HC. After incubation at 37 °C for 3 hr, media was removed, cells were washed twice with 500 µl of PBS, harvested, and equal aliquots of cell lysates were subjected to immunoblot analysis as described in Materials and Methods. P, precursor form of SREBP2; N, cleaved nuclear form of SREBP2.

Figure 2—figure supplement 4
Oxysterols that activate ACAT fail to trigger rapid depletion of accessible cholesterol from PMs of ACAT-deficient cells.

On day 0, the indicated versions of CHO-K1 cells were set up in medium B at a density of 6x104 cells per well of a 48-well plate. On day 1, media was removed, followed by addition of 200 µl of medium B supplemented without or with 5 µM of the indicated oxysterols (see Figure 1C for oxysterol structures). After incubation at 37 °C for 4 hr, media was removed and replaced with 200 µl of medium B supplemented with 3 µM His6-Flag-ALOD4. After incubation at 37 °C for 30 min, cells were washed twice with 500 µl of PBS, harvested, and equal aliquots of cell lysates were subjected to immunoblot analysis as described in Materials and methods.

Figure 2—figure supplement 5
Quantification of immunoblot analysis shown in Figure 2C and D.

(A, B) The intensities of bands corresponding to bound His6-FLAG-ALOD4 (left panels of Figure 2C and D) and bound OlyA-His6 (right panels of Figure 2C and D) were quantified by densitometry and normalized to cellular actin levels as described in Materials and Methods. The intensity values for the zero 25HC concentration point (lane 1 in all panels of Figure 2C and D) were set to 100 and all other values were normalized relative to this set-point. Each data point represents the average values obtained from three independent experiments (the ones shown in Figure 2C and D along with two other experiments conducted in the same manner) and error bars indicate the standard error.

Figure 3 with 1 supplement
Intracellular cholesterol trafficking and steady state levels of PM accessible cholesterol in ACAT-deficient cells.

On day 0, wild-type and ACAT1-deficient CHO-K1 cells were set up in medium B at a density of 5x104 cells per well of a 24-well plate (A, B) or 6x104 cells per well of a 48-well plate (C - E). (A, B) Steady state levels of accessible cholesterol in PMs. On day 1, media was removed, cells were washed twice with 500 µl of PBS followed by addition of 500 µl of medium A supplemented with 5% (v/v) of either LPDS (A) or FCS (B). On day 2, media was removed, cells were washed twice with 500 µl of PBS followed by addition of 200 µl of medium A containing 5% (v/v) of the indicated serum along with 0.5 µM of either fALOD4-fluorescein or fOlyA-fluorescein. After incubation at 37 °C for 30 min, media was removed, cells were washed twice with 500 µl of PBS, and subjected to flow cytometry as described in Materials and methods. LD, lipid droplets. (C) Cholesterol depletion by HPCD. On day 1, media was removed, cells were washed twice with 500 µl of PBS followed by addition of 200 µl of medium B supplemented with 2% (w/v) HPCD. (D) Cholesterol repletion by lipoproteins. On day 1, media was removed, cells were washed twice with 500 µl of PBS followed by addition of 500 µl of cholesterol-depleting medium C. On day 2, media was removed, cells were washed twice with 500 µl of PBS followed by addition of 200 µl of medium A containing either 5% (v/v) lipoprotein-deficient serum (lane 1) or the indicated concentrations of lipoprotein-rich FCS (lanes 2–7). (E) Cholesterol repletion by cholesterol/cyclodextrin complexes. On day 1, media was removed, cells were washed twice with 500 µl of PBS followed by addition of 200 µl of medium C supplemented with 1% (w/v) HPCD. After incubation at 37 °C for 1 hr, media was removed, cells were washed twice with 500 µl of PBS followed by addition of 200 µl of medium C supplemented with the indicated concentrations of cholesterol/MCD complexes. (C – E) After incubation at 37 °C for the indicated times (C), 5 hr (D), or 3 hr (E), media was removed, cells were washed twice with 500 µl of PBS, harvested, and equal aliquots of cell lysates were subjected to immunoblot analysis as described in Materials and methods. P, precursor form of SREBP2; N, cleaved nuclear form of SREBP2; Chol., cholesterol. Quantification of the immunoblots are shown in Figure 3—figure supplement 1.

Figure 3—figure supplement 1
Quantification of immunoblot analysis shown in Figure 3C, D and E.

(A – C) The intensities of bands corresponding to precursor (P) and nuclear (N) forms of SREBP2 in Figure 3C, D and E were quantified by densitometry and these values were used to calculate the percentage of nuclear SREBP2 (100*N/(N+P)). Each data point represents the average values obtained from three independent experiments (the ones shown in Figure 3C, D and E along with two other experiments conducted in the same manner) and error bars indicate the standard error.

Figure 4 with 2 supplements
25HC-triggered depletion of accessible cholesterol from PMs persists for long times through suppression of SREBP-mediated cholesterol synthesis and uptake, and continued activation of ACAT.

(A) Retention of 25HC in cells prevents replenishment of accessible cholesterol on PMs after it has been depleted by 25HC. On day 0, CHO-K1 cells were set up in medium B in eight 24-well plates at a density of 1.5x105 cells per well. On day 1, media was removed from seven of the eight plates, cells were washed twice with 1 ml of PBS followed by addition of 1 ml of medium B supplemented with 5 µM of 25HC (lanes 2–8). After incubation at 37 °C for 4 hr, media was removed, cells were washed twice with 1 ml of PBS followed by addition of 1 ml of medium B. Each of the seven plates was incubated for the indicated times, after which media was removed from 10 wells and cells were washed twice with 1 ml of PBS. Then, 100 µl of PBS was added to each well and the cells were scraped and pooled for further analysis. The eighth plate (lane 1) was not subjected to any treatment and was processed for analysis as above. For each plate, an aliquot of the pooled cells (20% of total) was used to determine protein concentration with a BCA protein assay kit and the remainder (80% of total) was subjected to mass spectrometry analysis for free 25HC as described in Materials and methods. An 11th well from each plate was subjected to immunoblot analysis of His6-Flag-ALOD4 binding (top panel). These samples were also immunoblotted for SREBP2 (third panel). P, precursor form of SREBP2; N, cleaved nuclear form of SREBP2. (B) Nuclear SREBPs counteract 25HC-mediated depletion of accessible cholesterol. On day 0, Site-2 protease-deficient CHO-K1 cells inducibly expressing the nuclear transcription factor domains (N–BP) of the indicated isoforms of SREBP were set up in medium B at a density of 5x104 cells per well of a 48-well plate. On day 1, media was removed, cells were washed twice with 500 µl of PBS followed by addition of 200 µl of medium B supplemented with the indicated concentrations of muristerone A. On day 2, media was removed, cells were washed twice with 500 µl of PBS followed by addition of 200 µl of medium B supplemented with the indicated concentration of muristerone along with 5 µM 25HC (lanes 2, 3, 5, 6). After incubation at 37 °C for 4 hr, media was removed, cells were washed twice with 500 µl of PBS followed by addition of 200 µl of medium B. After incubation for the indicated times, media was removed from these 25HC-treated wells as well as from two wells that were not subjected to any of the above treatments (lanes 1, 4). The media was replaced with 200 µl of medium B supplemented with 3 µM His6-Flag-ALOD4. After incubation at 37 °C for 30 min, cells were washed twice with 500 µl of PBS, harvested, and equal aliquots of cell lysates were subjected to immunoblot analysis as described in Materials and methods. Quantification of the immunoblots are shown in Figure 4—figure supplement 2A. (C) Inhibition of ACAT activity allows partial replenishment of accessible cholesterol on PMs after it has been depleted by 25HC. On day 0, CHO-K1 cells were set up in medium B at a density of 1.5x105 cells per well of a 24-well plate. On day 1, media was removed, cells were washed twice with 1 ml of PBS, followed by addition of 1 ml of medium B supplemented with 5 µM 25HC. After incubation at 37 °C for 4 hr, media was removed, cells were washed twice with 1 ml of PBS, followed by addition of 1 ml of medium B without or with 10 µM of SZ58-035. After incubation for the indicated times, media was removed and replaced with 200 µl of medium B supplemented with 3 µM His6-Flag-ALOD4. After incubation at 37 °C for 30 min, cells were washed twice with 1 ml of PBS, harvested, and equal aliquots of cell lysates were subjected to immunoblot analysis as described in Materials and methods. Quantification of the immunoblots are shown in Figure 4—figure supplement 2B. (D) PM accessible cholesterol in ACAT-deficient cells. On day 0, the indicated versions of CHO-K1 cells were set up in medium B at a density of 1.5x105 cells per well of a 24-well plate. On day 1, media was removed, cells were washed twice with 500 µl of PBS followed by addition of 300 µl of medium B supplemented with either 1% (w/v) HPCD (lanes 2, 3) or 5 µM 25HC (lanes 4, 5). After incubation for either 1 hr (lanes 2, 3) or 4 hr (lanes 4, 5), media was removed, cells were washed twice with PBS followed by addition of 1 ml of medium B. After incubation for the indicated times, media was removed from these treated wells as well as from a well that was not subjected to any of the above treatments (lane 1). The media was replaced with 200 µl of medium B supplemented with 3 µM His6-Flag-ALOD4. After incubation at 37 °C for 30 min, cells were washed twice with 1 ml of PBS, harvested, and equal aliquots of cell lysates were subjected to immunoblot analysis as described in Materials and methods. Quantification of the immunoblots are shown in Figure 4—figure supplement 2C.

Figure 4—figure supplement 1
Recovery of accessible cholesterol on PMs after depletion by HPCD.

On day 0, CHO-K1 cells were set up in medium B at a density of 1.5x105 cells per well of a 24-well plate. On day 1, media was removed, cells were washed twice with 1 ml of PBS followed by addition of 300 µl of medium B supplemented with 1% (w/v) HPCD (lanes 2–8). After incubation at 37 °C for 1 hr, media was removed, cells were washed twice with 1 ml of PBS followed by addition of 1 ml of medium B. After incubation for the indicated times, media was removed from these treated wells as well as from a well that was not subjected to any of the above treatments (lane 1). The media was replaced with 200 µl of medium B supplemented with 3 µM His6-Flag-ALOD4. After incubation at 37 °C for 30 min, cells were washed twice with 1 ml of PBS, harvested, and equal aliquots of cell lysates were subjected to immunoblot analysis as described in Materials and methods.

Figure 4—figure supplement 2
Quantification of immunoblot analysis shown in Figure 4B, C and D.

The intensities of bands corresponding to bound His6-FLAG-ALOD4 in Figure 4B, C and D were quantified by densitometry and normalized to cellular actin levels as described in Materials and methods. The intensity values for lane 1 of all panels were set to 100 and all other values were normalized relative to this set-point. Each data point represents the average values obtained from three independent experiments (the ones shown in Figure 4B, C and D along with two other experiments conducted in the same manner) and error bars indicate the standard error.

Figure 5 with 1 supplement
25HC fails to protect ACAT-deficient cells from pore formation by bacterial cytolysins.

On day 0, the indicated versions of CHO-K1 cells were set up in medium B at a density of 7.5x104 cells per well of a 48-well plate. On day 1, media was removed and replaced with 500 µl of medium B supplemented with the indicated concentrations of either 25HC or 4HC. After incubation at 37 °C for 4 hr, media was removed, cells were washed twice with 500 µl of HBSS followed by addition of 500 µl of HBSS containing either 100 pM of His6-ALO(FL) (top panel) or 500 pM of His6-PFO(FL) (bottom panel). After incubation at 37 °C for 15 min, media was removed and pore formation was assessed as described in Materials and methods. For each cell line, the extent of pore formation in the absence of oxysterol treatment was set to 100%, and all other values were normalized to this set-point.

Figure 5—figure supplement 1
Susceptibility of wild-type and ACAT-deficient CHO-K1 cells to pore formation by bacterial cytolysins.

(A, B) Pore formation by ALO and PFO. On day 0, the indicated versions of CHO-K1 cells were set up in medium B at a density of 7.5x104 cells per well of a 48-well plate. On day 1, media was removed, cells were washed twice with 500 µl of HBSS, followed by addition of 500 µl of HBSS supplemented with the indicated concentrations of His6-ALO(FL) (A) or His6-PFO(FL) (B). After incubation for 15 min at 37 °C, media was removed, and pore formation was assessed as described in Materials and methods. For each cell line, the maximum extent of pore formation for each replicate assay was set to 100%, and all other values were normalized to this set-point.

Figure 6 with 1 supplement
25HC fails to protect ACAT-deficient cell lines and mice from infection by Listeria monocytogenes.

(A) Listeria infection of CHO-K1 cells. On day 0, the indicated versions of CHO-K1 cells were set up in medium I at a density of 1x105 cells per well of a 24-well plate. On day 1, media was supplemented with either 25HC or 4HC to obtain the final concentration indicated. After incubation at 37 °C for 4 hr, cells were infected with Listeria monocytogenes (MOI = 1) for 90 min. Following this step, cells were washed twice with 1 ml of PBS followed by addition of 1 ml of medium I supplemented with 50 µg/ml of gentamicin to kill extracellular bacteria. After 22 hr, cells were harvested and infection levels were determined as described in Materials and methods. For each cell line, the infection level measured in the absence of oxysterols was set to 100% for each replicate, and all other values were normalized to this set-point. (B) Listeria infection of mice. On days 1–7, wild-type and ACAT1 KO mice were injected once daily intraperitoneally with either 25HC or ethanol. On day 4, the mice were orally infected with 1x109 Listeria monocytogenes strain EGD harboring a mutation in Internalin A (Lm-InlAm) as described in the Materials and methods. On day 7, 4 hr after the 25HC injection, the spleen, liver, and caecum tissues of each mouse was collected and infection levels were determined as described in Materials and methods. Asterisks denote levels of statistical significance (one-way analysis of variance (ANOVA) with Dunnett’s correction): non-significant (ns) p>0.05; * p≤0.05; ** p≤0.01; and *** p≤0.001. IP, intraperitoneal injection.

Figure 6—figure supplement 1
Susceptibility of wild-type and ACAT-deficient CHO-K1 cells to infection by Listeria monocytogenes.

On day 0, the indicated versions of CHO-K1 cells were set up in medium I at a density of 1x105 cells per well of a 24-well plate. On day 1, cells were infected with Listeria monocytogenes (MOI = 1) for 90 min. Following this step, cells were washed twice with 1 ml of PBS followed by addition of 1 ml of medium I supplemented with 50 µg/ml of gentamicin. After 22 hr, cells were harvested, and infection levels were determined as described in Materials and methods.

Figure 7 with 1 supplement
25HC fails to protect ACAT-deficient cells from viral infection.

(A, B) Viral infection of Huh7.5 cells. On day 0, the indicated versions of Huh7.5 cells were set up in medium E at a density of 7x104 cells per well of a 24-well plate. On day 1, media was removed and replaced with 1 ml of medium E supplemented with 5 µM of the indicated oxysterol. After incubation at 37 °C for 4 hr, media was removed, and cells were infected with either hCoV-OC43 (A) or ZIKV-mR766 (B) at the indicated temperatures as described in Materials and methods. After 24 hr, cells were harvested, and infection levels were determined as described in Materials and methods. Representative flow cytometry plots of infected cells and quantification of infection levels (rectangular boxes) are shown for hCoV-OC43 (A) and ZIKV-mR766 (B). The infection value obtained for Huh7.5 cells in the absence of oxysterol treatment for each experiment was set to 100% and all other values are normalized to this set-point. Asterisks denote levels of statistical significance (one-way analysis of variance (ANOVA) with Dunnett’s correction) of the unnormalized data: non-significant (ns) p>0.05; * p≤0.05; ** p≤0.01; and *** p≤0.001. In all panels, no significant differences (p>0.05) were detected in cells treated with 4HC.

Figure 7—figure supplement 1
Characterization of a Huh7.5 cell line deficient in ACAT1 and ACAT2.

(A) Strategy for generating Huh7.5 cells deficient in ACAT1 and ACAT2. Guide RNAs were designed to target and disrupt exon 6 in human ACAT1 (also designated as SOAT1) and exon 2 in human ACAT2 (also designated as SOAT2). The 20-nucleotide target sequences are shown in green and the NGG PAM sequences are in purple. Genomic sequencing of the SOAT1 (ACAT1) gene revealed a 1 bp insertion in one allele and a 63 bp deletion in the other allele that generated premature stop codons and truncated transcripts as indicated in red. Genomic sequencing of the SOAT2 (ACAT2) gene revealed a 7 bp deletion in one allele and a 1 bp insertion in the other allele that generated premature stop codons and truncated transcripts as indicated in red. (B) ACAT activity. On day 0, the indicated versions of Huh7.5 cells were set up in medium D at a density of 2.5x105 cells per 60 mm dish. On day 2, media was removed, cells were washed twice with 1 ml of PBS followed by addition of 2 ml of cholesterol-depleting medium (DMEM (high glucose) supplemented with 5% (v/v) LPDS, 50 µM compactin, 50 µM sodium mevalonate, 100 units/ml penicillin, and 100 µg/ml streptomycin sulfate). On day 3, media was removed, cells were washed with 1 ml of PBS followed by addition of 1 ml of the above cholesterol-depleting medium supplemented with the indicated concentration of 25HC. After incubation at 37 °C for 1 hr, each dish was supplemented with 0.2 mM sodium [14C]oleate (6500 dpm/nmol) and incubated at 37 °C for an additional 2 hr, after which cells were harvested, and levels of cholesteryl [14C]oleate were measured as described in Materials and Methods. Each column represents the mean of cholesterol esterification measurements from three experiments, and error bars show the standard error. (C) Immunoblot analysis of ALOD4 binding. On day 0, the indicated versions of Huh7.5 cells were set up in medium D at a density of 1.5x105 cells per well of a 24-well plate. On day 1, media was removed, cells were washed twice with 500 µl of PBS followed by addition of 200 µl of medium D supplemented with the indicated concentrations of either 25HC or 4HC. After incubation at 37 °C for 4 hr, media was removed and replaced with 200 μl of medium D supplemented with 3 μM of His6-Flag-ALOD4. After incubation at 37 °C for 30 min, cells were washed twice with 500 µl of PBS, harvested, and equal aliquots of cell lysates were subjected to immunoblot analysis as described in Materials and methods.

Author response image 1
Inhibition of ACAT activity and depletion of accessible PM cholesterol by 25HC in RAW macrophage cells.

(A) ACAT activity [same procedure as in Figure 1F]. On day 0, cells were set up either in medium D (RAW) or medium B (CHO-K1) at a density of 2.5 x 105 cells per 60-mm dish. One day 2, media was removed, cells were washed twice with PBS followed by addition of 2 ml of media containing lipoprotein-deficient serum and compactin, without or with 10 µm ACAT inhibitor SZ58-035. On day 3, media was removed, cells were washed with PBS followed by addition of 1 ml of same media supplemented with 25HC [in the absence of or presence of SZ58-035]. After incubation at 37°C for 1 h, each dish was supplemented with 0.2 mm sodium [14C]oleate and incubated at 37°C for an additional 2 h, after which cells were harvested and levels of [14C]cholesteryl oleate were measured as described in the methods. Each column represents the mean of cholesterol esterification measurements (in triplicate) from two independent experiments. (B) ALOD4 binding. On day 0, RAW macrophage cells were set up in medium D containing 10% FCS at a density of 7.5 x 104 cells per well of a 24-well plate. One day 1, media was removed, cells were washed twice with PBS followed by addition of 200 µl medium D (with 10% FCS) without or with 10 µm of SZ58-035. After 18 hours, media was replaced with 200 µl of the same media supplemented with the indicated concentrations of 25HC, without or with 10 µm of SZ58-035. After 1 hour, media was removed and replaced with 200 µl media supplemented with 3 µm His6-FLAG-ALOD4. After incubation at 37°C for 30 min, cells were washed twice with PBS, harvested and subjected to immunoblot analysis as described in methods.

Tables

Appendix 1—key resources table
Reagent type (species) or resourceDesignationSource or referenceIdentifiersAdditional information
Gene (Cricetulus griseus)Soat1NCBI GeneGene ID:100689317
Gene (H. sapiens)SOAT1NCBI GeneGene ID:6646
Gene (H. sapiens)SOAT2NCBI GeneGene ID:8435
Strain, strain background (Mus musculus)C57BL/6 JThe Jackson LaboratoryCat#000664
Strain, strain background (M. musculus)Wild Type C57BL/6JSoat1+/+This paperExperimental Wild-type mice
Strain, strain background (M. musculus)Mouse: ACAT1+/-: C57BL/6JSoat+/-This paperHeterozygous ACAT1 mice
Strain, strain background (M. musculus)Mouse: ACAT1-/-: C57BL/6JSoat1-/-This paperPMID:8943057Experimental ACAT1 KO mice
Strain, strain background (Listeria monocytogenes)10403sPMID:3114382Gift from Dr. Daniel Portnoy, University of California, Berkeley
Strain, strain background (L. monocytogenes)EGD InlAmutPMID:17540170Gift from Dr. Wolf-Dieter Schubert, University of Pretoria, South Africa
Strain, strain background (Escherichia coil)BL21 (DE3) pLysSInvitrogenCat#C606003Chemically competent cells
Strain, strain background (Coronaviridae)hCoV-OC43ATCCCat# VR-1558
Cell line (C. griseus)CHO-K1ATCCCAT#CCL-61
Cell line (C. griseus)CHO-K1 ACAT1 KOThis paperDr. Arun Radhakrishnan (UTSW)
Cell line (C. griseus)CHO-K1 ACAT1 KO; hACAT1(WT)This paperDr. Arun Radhakrishnan (UTSW)
Cell line (C. griseus)CHO-K1 ACAT1 KO; hACAT1(H460A)This paperDr. Arun Radhakrishnan (UTSW)
Cell line (C. griseus)M19PMID:9748295Dr. Arun Radhakrishnan (UTSW)
Cell line (C. griseus)SRD13APMID:10497220Dr. Arun Radhakrishnan (UTSW)
Cell line (H. sapiens)HEK293APMID:32284563Dr. Neal Alto (UTSW)
Cell line (H. sapiens)HEK293A LXRα;LXRβ-deficient cellsPMID:32284563Dr. Neal Alto (UTSW)
Cell line (H. sapiens)HEK293TPMID:21478870Dr. John Schoggins (UTSW)
Cell line (H. sapiens)Huh7.5PMID:21478870Dr. John Schoggins (UTSW)
Cell line (H. sapiens)Huh7.5ΔACATThis paperDr. Neal Alto (UTSW)
Transfected construct (human)pCDNA6.ZikaMR766.Venus3115Intron HDVrPMID:27704051Dr. Matthew Evans (Icahn School of Medicine at Mount Sinai)
Transfected construct (human)pGag-polOtherDr. Charles Rice (Rockefeller University)
Transfected construct (human)pLentiCRISPRv2-BlastAddgeneCat#98293
Transfected construct (human)pLentiCRISPRv2-PuroAddgeneCat#98290
Transfected construct (human)pTRIP.CMV.IVSB.ires.TagRFPPMID:21478870Dr. John Schoggins (UTSW)
Transfected construct (human)pTRIP.CMV.hACAT1.ires.TagRFPThis paperDr. Arun Radhakrishnan (UTSW)
Transfected construct (human)pTRIP.CMV.hACAT1(H460A).ires.TagRFPThis paperDr. Arun Radhakrishnan (UTSW)
Transfected construct (human)pVSV-GlycoproteinOtherDr. Charles Rice (Rockefeller University)
Antibodyanti-mouse IgG (H+L) (Donkey Polyclonal Peroxidase-AffiniPure)Jackson ImmunoResearchCat#715-035-150; RRID: AB_2340770WB (1:5,000)
Antibodyanti-rabbit IgG (H+L) (Goat Polyclonal Peroxidase AffiniPure)Jackson ImmunoResearchCat#111-035-003; RRID:AB_2313567WB (1:5,000)
Antibodyanti-Coronavirus Group Antigen, nucleoprotein of OC-43, 229E strain, clone 542-7D (Mouse Monoclonal)Millipore SigmaCat# MAB9013; RRID:AB_95425Flow cytometry (1:50)
Antibodyanti-FLAG M2 clone (Mouse Monoclonal)Sigma-AldrichF1804; RRID:AB_262044WB (1:1,000)
Antibodyanti-His Tag, clone HIS.H8 (Mouse Monoclonal)MilliporeCat#05–949; RRID:AB_492660WB (1:1,000)
Antibodyanti-SREBP2 (Mouse Monoclonal)Ref. (95)IgG-7D4WB (10 μg/ml)
Antibodyanti-Mouse IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor 488 (Mouse Polyclonal Goat)Thermo Fisher ScientificCat#A-11001; RRID:AB_2534069Flow cytometry (1:1,000)
Antibodyanti-ACAT1 (Rabbit Polyclonal)NovusCat#NB400-141; RRID:AB_10001588WB (1:1,000)
Recombinant DNA reagentHis6-ALO(FL) in pRSET-BPMID:25809258Dr. Arun Radhakrishnan (UTSW)
Recombinant DNA reagentHis6-FLAG-ALOD4 in pRSET-BPMID:33712199Dr. Arun Radhakrishnan (UTSW)
Recombinant DNA reagentHis6-Neon-FLAG-ALOD4 in pRSET-BPMID:33712199Dr. Arun Radhakrishnan (UTSW)
Recombinant DNA reagentOlyA-His6 in pRSET-BPMID:33712199Dr. Arun Radhakrishnan (UTSW)
Recombinant DNA reagentHis6-PFO(FL) in pRSET-BPMID:25809258Dr. Arun Radhakrishnan (UTSW)
Sequence-based reagentCHO-K1 Soat1 gRNA for Exon 2This paperTarget sequenceAGGAACCGGCTGTCAAAATC
Sequence-based reagentCHO-K1 Soat1 gRNA for Exon 14This paperTarget sequenceATAGCTCAAGCAGACAGCGA
Sequence-based reagentHuh7.5 SOAT1 gRNA for Exon 6This paperTarget sequenceCACCAGGTCCAAACAACGGT
Sequence-based reagentHuh7.5 SOAT2 gRNA for Exon 2This paperTarget sequenceGGTCCATTGTACCAAGTCCG
Sequence-based reagentCHO-K1 Soat1 Exon 2 ForwardThis paperPCR PrimerCTACAAGAGCTAGTTTCAGG
Sequence-based reagentCHO-K1 Soat1 Exon 2 ReverseThis paperPCR PrimerCCCTGTGTGTACAGTGCCTT
Sequence-based reagentCHO-K1 Soat1 Exon 14 ForwardThis paperPCR PrimerTCACTCACCTTGAAGACCCA
Sequence-based reagentCHO-K1 Soat1 Exon 14 ReverseThis paperPCR PrimerGGGTTCCTCTCTACACACTCA
Sequence-based reagentHuh7.5 Soat1 Exon 6 ForwardThis paperPCR PrimerCAGCGTATTAACGTTGTGGTGT
Sequence-based reagentHuh7.5 Soat1 Exon 6 ReverseThis paperPCR PrimerGCCCAATGTTGAAACAGAAAAT
Sequence-based reagentHuh7.5 Soat2 Exon 2 ForwardThis paperPCR PrimerCAACTTCCCCTTCTAGTAGCCC
Sequence-based reagentHuh7.5 Soat2 Exon 2 ReverseThis paperPCR PrimerCTTTATCACCAAGCCTCACTCC
Commercial assay or kitCytofix/Cytoperm Fixation/Permeabilization KitBD BiosciencesCat#554714;
RRID:AB_2869008
Commercial assay or kitLookOut Mycoplasma PCR Detection KitMillipore SigmaCat# MP0035
Commercial assay or kitMicroplate BCA Protein Assay KitThermo Fisher ScientificCat#23252
Chemical compound, drug19-hydroxycholesterolSteraloidsCat#C6470-000
Chemical compound, drug2-Hydroxypropyl-β-cyclodextrin (HPCD)Cyclodextrin Technologies
Development
Cat#THPB-P
Chemical compound, drug20(R)-hydroxycholesterolAvanti Polar LipidsCat#700156
Chemical compound, drug22(R)-hydroxycholesterolAvanti Polar LipidsCat#700058
Chemical compound, drug22(S)-hydroxycholesterolAvanti Polar LipidsCat#700057
Chemical compound, drug24(R)-hydroxycholesterolAvanti Polar LipidsCat#700071
Chemical compound, drug24(S)-hydroxycholesterolAvanti Polar LipidsCat#700061
Chemical compound, drug25-hydroxycholesterolAvanti Polar LipidsCat#700019
Chemical compound, drug25-hydroxycholesterol-3-sulfateAvanti Polar LipidsCat#700017
Chemical compound, drug25-hydroxycholesterol-d6Avanti Polar LipidsCat#700053
Chemical compound, drug27-hydroxycholesterolAvanti Polar LipidsCat#700021
Chemical compound, drug4’,6-Diamidino-2-phenylindole dihydrochloride (DAPI)Millipore SigmaCat#D8417Microscopy (1 µg/ml)
Chemical compound, drug4β-hydroxycholesterolAvanti Polar LipidsCat#700036
Chemical compound, drug7α-hydroxycholesterolAvanti Polar LipidsCat#700034
Chemical compound, drugAccumaxInnovative Cell TechnologiesCat#AM105
Chemical compound, drugAlexa Fluor 647 C2-maleimideThermo Fisher ScientificCat#A20347
Chemical compound, drugBlasticidin S HClThermo Fisher ScientificCat#A1113903
Chemical compound, drugBovine serum albuminMillipore SigmaCat#P0834
Chemical compound, drugBrain Heart Infusion AgarThermo Fisher ScientificCat#DF0418
Chemical compound, drugBrain Heart Infusion BrothThermo Fisher ScientificCat#DF0037
Chemical compound, drugCholesterolMillipore SigmaCat#C8667
Chemical compound, drugcOmplete, EDTA-free Protease Inhibitor CocktailRocheCat# 05056489001
Chemical compound, drugDulbecco’s Modified Eagle Medium (DMEM) – high glucoseSigmaCat#D6429
Chemical compound, drugDulbecco’s Modified Eagle Medium (DMEM) – low glucoseSigmaCat#D6046
Chemical compound, drugDulbecco’s Modified Eagle Medium (DMEM)/F-12 (1:1 mixture)CorningCat#10–090-CV
Chemical compound, drugDulbecco’s phosphate buffered saline (PBS)Thermo Fisher ScientificCat#MT21031CV
Chemical compound, drugFetal Calf SerumSigma-AldrichCat#F2442
Chemical compound, drugFluorescein-5-maleimideThermo Fisher ScientificCat#62245
Chemical compound, drugGentamicinQuality BiologicalCat#120-098-661
Chemical compound, drugGhost Dye Violet 450Tonbo biosciencesCat#13–0863
Chemical compound, drugHanks Balanced Salt Solution (HBSS)Millipore SigmaCat#14175–095
Chemical compound, drugHexadimethrine bromideThermo Fisher ScientificCat#107689
Chemical compound, drugMEM Non-Essential Amino Acids Solution (100 X)Thermo Fisher ScientificCat#11140050
Chemical compound, drugMethyl-β-cyclodextrin, randomly methylated (MCD)Cyclodextrin Technologies DevelopmentCat#TRMB-P
Chemical compound, drugMuristerone ASigma-AldrichCat#M7888
Chemical compound, drugOpti-MEMThermo Fisher ScientificCat#31985062
Chemical compound, drugParaformaldehydeAlfa AesarCat#43368
Chemical compound, drugPenicillin/StreptomycinGibcoCat#15140–122
Chemical compound, drugPhenylmethylsulfonyl fluoride (PMSF)GoldbioCat#P-470–25
Chemical compound, drugPuromycinThermo Fisher ScientificCat#A1113803
Chemical compound, drugRabbit Whole BloodInnovative ResearchCat#
IGRBWBK2E10ML
Chemical compound, drugSodium compactinPMID:624722N/A
Chemical compound, drugSodium mevalonatePMID:624722N/A
Chemical compound, drugSandoz 58–035 (SZ58-035)Millipore SigmaCat#S9318
Chemical compound, drugTris (2-carboxyethyl) phosphine Hydrochloride (TCEP)GoldbioCat#TCEP1
Software, algorithmBenchling CRISPR Guide RNA design toolBenchlinghttps://www.benchling.com/crispr
Software, algorithmCHOP-CHOPPMID:31106371https://chopchop.cbu.uib.no/
Software, algorithmFlowJoBD (Becton, Dickinson & Co.)http://www.flowjo.com
Software, algorithmImageJPMID:22930834https://imagej.nih.gov/ij/
OtherEclipse Ti epifluorescence microscopeNikon Inc.N/AInstrument used for microscopy imaging studies.
OtherS1000 Flow CytometerStratedigm Inc.NAInstrument used for flow cytometry analysis.

Additional files

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. David B Heisler
  2. Kristen A Johnson
  3. Duo H Ma
  4. Maikke B Ohlson
  5. Lishu Zhang
  6. Michelle Tran
  7. Chase D Corley
  8. Michael E Abrams
  9. Jeffrey G McDonald
  10. John W Schoggins
  11. Neal M Alto
  12. Arun Radhakrishnan
(2023)
A concerted mechanism involving ACAT and SREBPs by which oxysterols deplete accessible cholesterol to restrict microbial infection
eLife 12:e83534.
https://doi.org/10.7554/eLife.83534