A concerted mechanism involving ACAT and SREBPs by which oxysterols deplete accessible cholesterol to restrict microbial infection

Abstract

Most of the cholesterol in the plasma membranes (PMs) of animal cells is sequestered through interactions with phospholipids and transmembrane domains of proteins. However, as cholesterol concentration rises above the PM's sequestration capacity, a new pool of cholesterol, called accessible cholesterol, emerges. The transport of accessible cholesterol between the PM and the endoplasmic reticulum (ER) is critical to maintain cholesterol homeostasis. This pathway has also been implicated in the suppression of both bacterial and viral pathogens by immunomodulatory oxysterols. Here, we describe a mechanism of depletion of accessible cholesterol from PMs by the oxysterol 25-hydroxycholesterol (25HC). We show that 25HC-mediated activation of acyl coenzyme A: cholesterol acyltransferase (ACAT) in the ER creates an imbalance in the equilibrium distribution of accessible cholesterol between the ER and PM. This imbalance triggers the rapid internalization of accessible cholesterol from the PM, which is sustained for long periods of time through 25HC-mediated suppression of SREBPs and continued activation of ACAT. In support of a physiological role for this mechanism, 25HC failed to suppress Zika virus and human coronavirus infection in ACAT-deficient cells, and Listeria monocytogenes infection in ACAT-deficient cells and mice. We propose that selective depletion of accessible PM cholesterol triggered by ACAT activation and sustained through SREBP suppression underpins the immunological activities of 25HC and a functionally related class of oxysterols.

Data availability

All reagents generated in this study are available from the authors with a completed Materials Transfer Agreement. No datasets were generated in this study that required deposition in data repositories. Original, uncropped scans of all immunoblots shown in this study are included in the Source Data Files attached to the respective Figures. The raw data (including replicates and statistics) for all graphs shown in this study are included in the Source Data Files attached to the respective Figures

Article and author information

Author details

  1. David B Heisler

    Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6482-4215
  2. Kristen A Johnson

    Department of Molecular Genetics, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2635-7406
  3. Duo H Ma

    Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6736-551X
  4. Maikke B Ohlson

    Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  5. Lishu Zhang

    Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  6. Michelle Tran

    Department of Molecular Genetics, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  7. Chase D Corley

    Department of Molecular Genetics, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  8. Michael E Abrams

    Department of Micr, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  9. Jeffrey G McDonald

    Department of Molecular Genetics, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  10. John W Schoggins

    Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    John W Schoggins, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7944-6800
  11. Neal M Alto

    Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    neal.alto@utsouthwestern.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7602-3853
  12. Arun Radhakrishnan

    Department of Molecular Genetics, The University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    arun.radhakrishnan@utsouthwestern.edu
    Competing interests
    Arun Radhakrishnan, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7266-7336

Funding

National Institutes of Health (AI158357)

  • Neal M Alto
  • Arun Radhakrishnan

National Institutes of Health (HL160487)

  • Jeffrey G McDonald
  • Arun Radhakrishnan

National Institutes of Health (AI083359)

  • Neal M Alto

National Institutes of Health (AI158124)

  • John W Schoggins

National Institutes of Health (5T32AI007520)

  • David B Heisler

Welch Foundation (I-1731)

  • Neal M Alto

Welch Foundation (I-1793)

  • Arun Radhakrishnan

Fondation Leducq (19CVD04)

  • Arun Radhakrishnan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Suzanne R Pfeffer, Stanford University, United States

Ethics

Animal experimentation: All animal experiments were performed with the approval of the Institutional Animal Care & Use Committee (IACUC) at the University of Texas Southwestern Medical Center (Approval Reference Number: APN102346).

Version history

  1. Received: September 17, 2022
  2. Preprint posted: October 11, 2022 (view preprint)
  3. Accepted: January 25, 2023
  4. Accepted Manuscript published: January 25, 2023 (version 1)
  5. Version of Record published: February 13, 2023 (version 2)
  6. Version of Record updated: July 26, 2023 (version 3)

Copyright

© 2023, Heisler et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,628
    views
  • 303
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. David B Heisler
  2. Kristen A Johnson
  3. Duo H Ma
  4. Maikke B Ohlson
  5. Lishu Zhang
  6. Michelle Tran
  7. Chase D Corley
  8. Michael E Abrams
  9. Jeffrey G McDonald
  10. John W Schoggins
  11. Neal M Alto
  12. Arun Radhakrishnan
(2023)
A concerted mechanism involving ACAT and SREBPs by which oxysterols deplete accessible cholesterol to restrict microbial infection
eLife 12:e83534.
https://doi.org/10.7554/eLife.83534

Share this article

https://doi.org/10.7554/eLife.83534

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Lucie Crhak Khaitova, Pavlina Mikulkova ... Karel Riha
    Research Article

    Heat stress is a major threat to global crop production, and understanding its impact on plant fertility is crucial for developing climate-resilient crops. Despite the known negative effects of heat stress on plant reproduction, the underlying molecular mechanisms remain poorly understood. Here, we investigated the impact of elevated temperature on centromere structure and chromosome segregation during meiosis in Arabidopsis thaliana. Consistent with previous studies, heat stress leads to a decline in fertility and micronuclei formation in pollen mother cells. Our results reveal that elevated temperature causes a decrease in the amount of centromeric histone and the kinetochore protein BMF1 at meiotic centromeres with increasing temperature. Furthermore, we show that heat stress increases the duration of meiotic divisions and prolongs the activity of the spindle assembly checkpoint during meiosis I, indicating an impaired efficiency of the kinetochore attachments to spindle microtubules. Our analysis of mutants with reduced levels of centromeric histone suggests that weakened centromeres sensitize plants to elevated temperature, resulting in meiotic defects and reduced fertility even at moderate temperatures. These results indicate that the structure and functionality of meiotic centromeres in Arabidopsis are highly sensitive to heat stress, and suggest that centromeres and kinetochores may represent a critical bottleneck in plant adaptation to increasing temperatures.

    1. Cell Biology
    Wan-ping Yang, Mei-qi Li ... Qian-qian Luo
    Research Article

    High-altitude polycythemia (HAPC) affects individuals living at high altitudes, characterized by increased red blood cells (RBCs) production in response to hypoxic conditions. The exact mechanisms behind HAPC are not fully understood. We utilized a mouse model exposed to hypobaric hypoxia (HH), replicating the environmental conditions experienced at 6000 m above sea level, coupled with in vitro analysis of primary splenic macrophages under 1% O2 to investigate these mechanisms. Our findings indicate that HH significantly boosts erythropoiesis, leading to erythrocytosis and splenic changes, including initial contraction to splenomegaly over 14 days. A notable decrease in red pulp macrophages (RPMs) in the spleen, essential for RBCs processing, was observed, correlating with increased iron release and signs of ferroptosis. Prolonged exposure to hypoxia further exacerbated these effects, mirrored in human peripheral blood mononuclear cells. Single-cell sequencing showed a marked reduction in macrophage populations, affecting the spleen’s ability to clear RBCs and contributing to splenomegaly. Our findings suggest splenic ferroptosis contributes to decreased RPMs, affecting erythrophagocytosis and potentially fostering continuous RBCs production in HAPC. These insights could guide the development of targeted therapies for HAPC, emphasizing the importance of splenic macrophages in disease pathology.