Global analysis of contact-dependent human-to-mouse intercellular mRNA and lncRNA transfer in cell culture

  1. Sandipan Dasgupta
  2. Daniella Y Dayagi
  3. Gal Haimovich  Is a corresponding author
  4. Emanuel Wyler
  5. Tsviya Olender
  6. Robert H Singer
  7. Markus Landthaler
  8. Jeffrey E Gerst  Is a corresponding author
  1. Weizmann Institute of Science, Israel
  2. Max Delbruck Center for Molecular Medicine, Switzerland
  3. Albert Einstein College of Medicine, United States

Abstract

Full-length mRNAs transfer between adjacent mammalian cells via direct cell-to-cell connections called tunneling nanotubes (TNTs). However, the extent of mRNA transfer at the transcriptome-wide level (the 'transferome') is unknown. Here, we analyzed the transferome in an in vitro human-mouse cell co-culture model using RNA-sequencing. We found that mRNA transfer is non-selective, prevalent across the human transcriptome, and that the amount of transfer to mouse embryonic fibroblasts (MEFs) strongly correlates with the endogenous level of gene expression in donor human breast cancer cells. Typically, <1% of endogenous mRNAs undergo transfer. Non-selective, expression-dependent RNA transfer was further validated using synthetic reporters. RNA transfer appears contact-dependent via TNTs, as exemplified for several mRNAs. Notably, significant differential changes in the native MEF transcriptome were observed in response to co-culture, including the upregulation of multiple cancer and cancer-associated fibroblast-related genes and pathways. Together, these results lead us to suggest that TNT-mediated RNA transfer could be a phenomenon of physiological importance under both normal and pathogenic conditions.

Data availability

The processed RNA sequencing files have been deposited in the Gene Expression Omnibus (GEO) Database under the accession number GSE185002

The following data sets were generated

Article and author information

Author details

  1. Sandipan Dasgupta

    Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    No competing interests declared.
  2. Daniella Y Dayagi

    Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2310-2416
  3. Gal Haimovich

    Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
    For correspondence
    gal.haimovich@weizmann.ac.il
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3360-5108
  4. Emanuel Wyler

    Berlin Institute of Medical Systems Biology and Systems Biology, Max Delbruck Center for Molecular Medicine, Zurich, Switzerland
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9884-1806
  5. Tsviya Olender

    Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    No competing interests declared.
  6. Robert H Singer

    Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, United States
    Competing interests
    Robert H Singer, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6725-0093
  7. Markus Landthaler

    Berlin Institute for Medical Systems Biology, Max Delbruck Center for Molecular Medicine, Zurich, Switzerland
    Competing interests
    No competing interests declared.
  8. Jeffrey E Gerst

    Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
    For correspondence
    jeffrey.gerst@weizmann.ac.il
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8411-6881

Funding

German-Israeli Foundation for Scientific Research and Development (I-1461-412.13/2018)

  • Markus Landthaler
  • Jeffrey E Gerst

US-Israel Binational Science Foundation-National Science Foundation (2015846)

  • Robert H Singer
  • Jeffrey E Gerst

Joel and Mady Dukler Fund for Cancer Research

  • Jeffrey E Gerst

Jean-Jacques Brunschwig Fund for the Molecular Genetics of Cancer

  • Jeffrey E Gerst

Moross Integrated Cancer Center

  • Jeffrey E Gerst

Kekst Family Institute for Medical Genetics

  • Jeffrey E Gerst

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Dasgupta et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,337
    views
  • 205
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sandipan Dasgupta
  2. Daniella Y Dayagi
  3. Gal Haimovich
  4. Emanuel Wyler
  5. Tsviya Olender
  6. Robert H Singer
  7. Markus Landthaler
  8. Jeffrey E Gerst
(2023)
Global analysis of contact-dependent human-to-mouse intercellular mRNA and lncRNA transfer in cell culture
eLife 12:e83584.
https://doi.org/10.7554/eLife.83584

Share this article

https://doi.org/10.7554/eLife.83584

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Bethany M Bartlett, Yatendra Kumar ... Wendy A Bickmore
    Research Article Updated

    During oncogene-induced senescence there are striking changes in the organisation of heterochromatin in the nucleus. This is accompanied by activation of a pro-inflammatory gene expression programme – the senescence-associated secretory phenotype (SASP) – driven by transcription factors such as NF-κB. The relationship between heterochromatin re-organisation and the SASP has been unclear. Here, we show that TPR, a protein of the nuclear pore complex basket required for heterochromatin re-organisation during senescence, is also required for the very early activation of NF-κB signalling during the stress-response phase of oncogene-induced senescence. This is prior to activation of the SASP and occurs without affecting NF-κB nuclear import. We show that TPR is required for the activation of innate immune signalling at these early stages of senescence and we link this to the formation of heterochromatin-enriched cytoplasmic chromatin fragments thought to bleb off from the nuclear periphery. We show that HMGA1 is also required for cytoplasmic chromatin fragment formation. Together these data suggest that re-organisation of heterochromatin is involved in altered structural integrity of the nuclear periphery during senescence, and that this can lead to activation of cytoplasmic nucleic acid sensing, NF-κB signalling, and activation of the SASP.

    1. Cell Biology
    John Yong, Jacqueline E Villalta ... Calvin H Jan
    Research Article

    Protein aggregation increases during aging and is a pathological hallmark of many age-related diseases. Protein homeostasis (proteostasis) depends on a core network of factors directly influencing protein production, folding, trafficking, and degradation. Cellular proteostasis also depends on the overall composition of the proteome and numerous environmental variables. Modulating this cellular proteostasis state can influence the stability of multiple endogenous proteins, yet the factors contributing to this state remain incompletely characterized. Here, we performed genome-wide CRISPRi screens to elucidate the modulators of proteostasis state in mammalian cells, using a fluorescent dye to monitor endogenous protein aggregation. These screens identified known components of the proteostasis network and uncovered a novel link between protein and lipid homeostasis. Increasing lipid uptake and/or disrupting lipid metabolism promotes the accumulation of sphingomyelins and cholesterol esters and drives the formation of detergent-insoluble protein aggregates at the lysosome. Proteome profiling of lysosomes revealed ESCRT accumulation, suggesting disruption of ESCRT disassembly, lysosomal membrane repair, and microautophagy. Lipid dysregulation leads to lysosomal membrane permeabilization but does not otherwise impact fundamental aspects of lysosomal and proteasomal functions. Together, these results demonstrate that lipid dysregulation disrupts ESCRT function and impairs proteostasis.