Force propagation between epithelial cells depends on active coupling and mechano-structural polarization

Abstract

Cell-generated forces play a major role in coordinating the large-scale behavior of cell assemblies, in particular during development, wound healing and cancer. Mechanical signals propagate faster than biochemical signals, but can have similar effects, especially in epithelial tissues with strong cell-cell adhesion. However, a quantitative description of the transmission chain from force generation in a sender cell, force propagation across cell-cell boundaries, and the concomitant response of receiver cells is missing. For a quantitative analysis of this important situation, here we propose a minimal model system of two epithelial cells on an H-pattern ('cell doublet'). After optogenetically activating RhoA, a major regulator of cell contractility, in the sender cell, we measure the mechanical response of the receiver cell by traction force and monolayer stress microscopies. In general, we find that the receiver cells shows an active response so that the cell doublet forms a coherent unit. However, force propagation and response of the receiver cell also strongly depends on the mechano-structural polarization in the cell assembly, which is controlled by cell-matrix adhesion to the adhesive micropattern. We find that the response of the receiver cell is stronger when the mechano-structural polarization axis is oriented perpendicular to the direction of force propagation, reminiscent of the Poisson effect in passive materials. We finally show that the same effects are at work in small tissues. Our work demonstrates that cellular organization and active mechanical response of a tissue is key to maintain signal strength and leads to the emergence of elasticity, which means that signals are not dissipated like in a viscous system, but can propagate over large distances.

Data availability

All data has been deposited on dryad (https://doi.org/10.5061/dryad.sj3tx9683). All code has been deposited on Github (https://github.com/ArturRuppel/ForceTransmissionInDoublets).

The following data sets were generated

Article and author information

Author details

  1. Artur Ruppel

    Laboratoire Interdisciplinaire de Physique, Grenoble Alpes University, Saint Martin d'Hères, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Dennis Wörthmüller

    Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Vladimir Misiak

    Laboratoire Interdisciplinaire de Physique, Grenoble Alpes University, Saint Martin d'Hères, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6637-8071
  4. Manasi Kelkar

    London Centre for Nanotechnology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Irène Wang

    Laboratoire Interdisciplinaire de Physique, Grenoble Alpes University, Saint Martin d'Hères, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Philippe Moreau

    Laboratoire Interdisciplinaire de Physique, Grenoble Alpes University, Saint Martin d'Hères, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Adrien Méry

    Laboratoire Interdisciplinaire de Physique, Grenoble Alpes University, Saint Martin d'Hères, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9582-0519
  8. Jean Révilloud

    Laboratoire Interdisciplinaire de Physique, Grenoble Alpes University, Saint Martin d'Hères, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Guillaume Charras

    Department of Cell and Developmental Biology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7902-0279
  10. Giovanni Cappello

    Laboratoire Interdisciplinaire de Physique, Grenoble Alpes University, Saint Martin d'Hères, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5012-367X
  11. Thomas Boudou

    Laboratoire Interdisciplinaire de Physique, Grenoble Alpes University, Saint Martin d'Hères, France
    Competing interests
    The authors declare that no competing interests exist.
  12. Ulrich Sebastian Schwarz

    Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany
    For correspondence
    schwarz@thphys.uni-heidelberg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1483-640X
  13. Martial Balland

    Laboratoire Interdisciplinaire de Physique, Grenoble Alpes University, Saint Martin d'Hères, France
    For correspondence
    martial.balland@univ-grenoble-alpes.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6585-9735

Funding

Swiss National Science Foundation (P2LAP3 164919)

  • Manasi Kelkar

European Research Council (CoG-647186)

  • Guillaume Charras

Agence Nationale de la Recherche (ANR-19-CE13-0028)

  • Giovanni Cappello

Centre National de la Recherche Scientifique

  • Thomas Boudou

Deutsche Forschungsgemeinschaft (SCHW 834/2-1)

  • Ulrich Sebastian Schwarz

Agence Nationale de la Recherche (ANR-17-CE30-0032-01)

  • Martial Balland

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Ruppel et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,775
    views
  • 359
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Artur Ruppel
  2. Dennis Wörthmüller
  3. Vladimir Misiak
  4. Manasi Kelkar
  5. Irène Wang
  6. Philippe Moreau
  7. Adrien Méry
  8. Jean Révilloud
  9. Guillaume Charras
  10. Giovanni Cappello
  11. Thomas Boudou
  12. Ulrich Sebastian Schwarz
  13. Martial Balland
(2023)
Force propagation between epithelial cells depends on active coupling and mechano-structural polarization
eLife 12:e83588.
https://doi.org/10.7554/eLife.83588

Share this article

https://doi.org/10.7554/eLife.83588

Further reading

    1. Cell Biology
    Chengfang Pan, Ying Liu ... Changlong Hu
    Research Article

    Prostaglandin E2 (PGE2) is an endogenous inhibitor of glucose-stimulated insulin secretion (GSIS) and plays an important role in pancreatic β-cell dysfunction in type 2 diabetes mellitus (T2DM). This study aimed to explore the underlying mechanism by which PGE2 inhibits GSIS. Our results showed that PGE2 inhibited Kv2.2 channels via increasing PKA activity in HEK293T cells overexpressed with Kv2.2 channels. Point mutation analysis demonstrated that S448 residue was responsible for the PKA-dependent modulation of Kv2.2. Furthermore, the inhibitory effect of PGE2 on Kv2.2 was blocked by EP2/4 receptor antagonists, while mimicked by EP2/4 receptor agonists. The immune fluorescence results showed that EP1–4 receptors are expressed in both mouse and human β-cells. In INS-1(832/13) β-cells, PGE2 inhibited voltage-gated potassium currents and electrical activity through EP2/4 receptors and Kv2.2 channels. Knockdown of Kcnb2 reduced the action potential firing frequency and alleviated the inhibition of PGE2 on GSIS in INS-1(832/13) β-cells. PGE2 impaired glucose tolerance in wild-type mice but did not alter glucose tolerance in Kcnb2 knockout mice. Knockout of Kcnb2 reduced electrical activity, GSIS and abrogated the inhibition of PGE2 on GSIS in mouse islets. In conclusion, we have demonstrated that PGE2 inhibits GSIS in pancreatic β-cells through the EP2/4-Kv2.2 signaling pathway. The findings highlight the significant role of Kv2.2 channels in the regulation of β-cell repetitive firing and insulin secretion, and contribute to the understanding of the molecular basis of β-cell dysfunction in diabetes.

    1. Cell Biology
    Ryan M Finnerty, Daniel J Carulli ... Wipawee Winuthayanon
    Research Article

    The oviduct is the site of fertilization and preimplantation embryo development in mammals. Evidence suggests that gametes alter oviductal gene expression. To delineate the adaptive interactions between the oviduct and gamete/embryo, we performed a multi-omics characterization of oviductal tissues utilizing bulk RNA-sequencing (RNA-seq), single-cell RNA-sequencing (scRNA-seq), and proteomics collected from distal and proximal at various stages after mating in mice. We observed robust region-specific transcriptional signatures. Specifically, the presence of sperm induces genes involved in pro-inflammatory responses in the proximal region at 0.5 days post-coitus (dpc). Genes involved in inflammatory responses were produced specifically by secretory epithelial cells in the oviduct. At 1.5 and 2.5 dpc, genes involved in pyruvate and glycolysis were enriched in the proximal region, potentially providing metabolic support for developing embryos. Abundant proteins in the oviductal fluid were differentially observed between naturally fertilized and superovulated samples. RNA-seq data were used to identify transcription factors predicted to influence protein abundance in the proteomic data via a novel machine learning model based on transformers of integrating transcriptomics and proteomics data. The transformers identified influential transcription factors and correlated predictive protein expressions in alignment with the in vivo-derived data. Lastly, we found some differences between inflammatory responses in sperm-exposed mouse oviducts compared to hydrosalpinx Fallopian tubes from patients. In conclusion, our multi-omics characterization and subsequent in vivo confirmation of proteins/RNAs indicate that the oviduct is adaptive and responsive to the presence of sperm and embryos in a spatiotemporal manner.