The effect of weight loss following 18 months of lifestyle intervention on brain age assessed with resting-state functional connectivity
Abstract
Background: Obesity negatively impacts multiple bodily systems, including the central nervous system. Retrospective studies that estimated chronological age from neuroimaging have found accelerated brain aging in obesity, but it is unclear how this estimation would be affected by weight loss following a lifestyle intervention.
Methods: In a sub-study of 102 participants of the DIRECT-PLUS (dietary-intervention-randomized-controlled-trial polyphenol-unprocessed) trial, we tested the effect of weight loss following 18 months of lifestyle intervention on predicted brain age based on MRI-assessed resting-state functional connectivity (RSFC). We further examined how dynamics in multiple health factors, including anthropometric measurements, blood biomarkers, and fat deposition, can account for changes in brain age.
Results: To establish our method, we first demonstrated that our model could successfully predict chronological age from RSFC in three cohorts (n=291;358;102). We then found that among the DIRECT-PLUS participants, 1% of body weight loss resulted in an 8.9 months attenuation of brain age. Attenuation of brain age was significantly associated with improved liver biomarkers, decreased liver fat, and visceral and deep subcutaneous adipose tissues after 18m of intervention. Finally, we showed that lower consumption of processed food, sweets, and beverages were associated with attenuated brain age.
Conclusions: Successful weight loss following lifestyle intervention might have a beneficial effect on the trajectory of brain aging.
Funding: The German Research Foundation (DFG), German Research Foundation - project number 209933838 - SFB 1052; B11), Israel Ministry of Health grant 87472511 (to I Shai); Israel Ministry of Science and Technology grant 3-13604 (to I Shai); and the California Walnuts Commission (to I Shai).
Clinical Trial: This trial was registered at clinicaltrials.gov as NCT03020186.
Data availability
The code for the brain age prediction model and the calculation of brain age attenuation is openly available online at https://github.com/GidLev/functional_brain_aging. The unprocessed data used for the model training and validation is openly available online at http://fcon_1000.projects.nitrc.org/indi/enhanced/neurodata.html for the eNKI dataset and available upon online access request https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/ for the CamCAN dataset. Data from the DIRECT-PLUS trial is not publicly available since it contains information that could compromise the privacy of research participants. However, de-identified data could be shared upon request, subject to approval from the Soroka Medical Center Medical Ethics Board. A processed version of the data that includes participants' demographics, predicted and observed age and weight values for T0 and T18 is available as supplementary information.
-
The Cambridge Centre for Ageing and NeuroscienceStructural and functional MRI, MEG, and cognitive data from a cross-sectional adult lifespan sample.
-
The NKI-Rockland sampleWide array of physiological and psychological assessments, genetic information, and advanced neuroimaging.
Article and author information
Author details
Funding
The German Research Foundation (209933838 SFB 1052; B11)
- Iris Shai
Israel Ministry of Health (grant 87472511)
- Iris Shai
Israel Ministry of Science and Technology (3-13604)
- Iris Shai
California Walnuts Commission
- Iris Shai
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: This work was based on a sub-study of the DIREC-PLUS trial (clinicaltrials.gov ID: NCT03020186). The Soroka Medical Center Medical Ethics Board and Institutional Review Board provided ethics approval. All participants provided written consent and received no financial compensation.
Copyright
© 2023, Levakov et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 7,466
- views
-
- 745
- downloads
-
- 9
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Epidemiology and Global Health
- Genetics and Genomics
Alzheimer’s disease (AD) is a complex degenerative disease of the central nervous system, and elucidating its pathogenesis remains challenging. In this study, we used the inverse-variance weighted (IVW) model as the major analysis method to perform hypothesis-free Mendelian randomization (MR) analysis on the data from MRC IEU OpenGWAS (18,097 exposure traits and 16 AD outcome traits), and conducted sensitivity analysis with six models, to assess the robustness of the IVW results, to identify various classes of risk or protective factors for AD, early-onset AD, and late-onset AD. We generated 400,274 data entries in total, among which the major analysis method of the IVW model consists of 73,129 records with 4840 exposure traits, which fall into 10 categories: Disease, Medical laboratory science, Imaging, Anthropometric, Treatment, Molecular trait, Gut microbiota, Past history, Family history, and Lifestyle trait. More importantly, a freely accessed online platform called MRAD (https://gwasmrad.com/mrad/) has been developed using the Shiny package with MR analysis results. Additionally, novel potential AD therapeutic targets (CD33, TBCA, VPS29, GNAI3, PSME1) are identified, among which CD33 was positively associated with the main outcome traits of AD, as well as with both EOAD and LOAD. TBCA and VPS29 were negatively associated with the main outcome traits of AD, as well as with both EOAD and LOAD. GNAI3 and PSME1 were negatively associated with the main outcome traits of AD, as well as with LOAD, but had no significant causal association with EOAD. The findings of our research advance our understanding of the etiology of AD.
-
- Epidemiology and Global Health
Artificially sweetened beverages containing noncaloric monosaccharides were suggested as healthier alternatives to sugar-sweetened beverages. Nevertheless, the potential detrimental effects of these noncaloric monosaccharides on blood vessel function remain inadequately understood. We have established a zebrafish model that exhibits significant excessive angiogenesis induced by high glucose, resembling the hyperangiogenic characteristics observed in proliferative diabetic retinopathy (PDR). Utilizing this model, we observed that glucose and noncaloric monosaccharides could induce excessive formation of blood vessels, especially intersegmental vessels (ISVs). The excessively branched vessels were observed to be formed by ectopic activation of quiescent endothelial cells (ECs) into tip cells. Single-cell transcriptomic sequencing analysis of the ECs in the embryos exposed to high glucose revealed an augmented ratio of capillary ECs, proliferating ECs, and a series of upregulated proangiogenic genes. Further analysis and experiments validated that reduced foxo1a mediated the excessive angiogenesis induced by monosaccharides via upregulating the expression of marcksl1a. This study has provided new evidence showing the negative effects of noncaloric monosaccharides on the vascular system and the underlying mechanisms.