The effect of weight loss following 18 months of lifestyle intervention on brain age assessed with resting-state functional connectivity

  1. Gidon Levakov  Is a corresponding author
  2. Alon Kaplan
  3. Anat Yaskolka Meir
  4. Ehud Rinott
  5. Gal Tsaban
  6. Hila Zelicha
  7. Matthias Blüher
  8. Uta Ceglarek
  9. Michael Stumvoll
  10. Ilan Shelef
  11. Galia Avidan
  12. Iris Shai
  1. Ben-Gurion University of the Negev, Israel
  2. University of Leipzig, Germany
  3. Soroka Medical Center, Israel

Abstract

Background: Obesity negatively impacts multiple bodily systems, including the central nervous system. Retrospective studies that estimated chronological age from neuroimaging have found accelerated brain aging in obesity, but it is unclear how this estimation would be affected by weight loss following a lifestyle intervention.

Methods: In a sub-study of 102 participants of the DIRECT-PLUS (dietary-intervention-randomized-controlled-trial polyphenol-unprocessed) trial, we tested the effect of weight loss following 18 months of lifestyle intervention on predicted brain age based on MRI-assessed resting-state functional connectivity (RSFC). We further examined how dynamics in multiple health factors, including anthropometric measurements, blood biomarkers, and fat deposition, can account for changes in brain age.

Results: To establish our method, we first demonstrated that our model could successfully predict chronological age from RSFC in three cohorts (n=291;358;102). We then found that among the DIRECT-PLUS participants, 1% of body weight loss resulted in an 8.9 months attenuation of brain age. Attenuation of brain age was significantly associated with improved liver biomarkers, decreased liver fat, and visceral and deep subcutaneous adipose tissues after 18m of intervention. Finally, we showed that lower consumption of processed food, sweets, and beverages were associated with attenuated brain age.

Conclusions: Successful weight loss following lifestyle intervention might have a beneficial effect on the trajectory of brain aging.

Funding: The German Research Foundation (DFG), German Research Foundation - project number 209933838 - SFB 1052; B11), Israel Ministry of Health grant 87472511 (to I Shai); Israel Ministry of Science and Technology grant 3-13604 (to I Shai); and the California Walnuts Commission (to I Shai).

Clinical Trial: This trial was registered at clinicaltrials.gov as NCT03020186.

Data availability

The code for the brain age prediction model and the calculation of brain age attenuation is openly available online at https://github.com/GidLev/functional_brain_aging. The unprocessed data used for the model training and validation is openly available online at http://fcon_1000.projects.nitrc.org/indi/enhanced/neurodata.html for the eNKI dataset and available upon online access request https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/ for the CamCAN dataset. Data from the DIRECT-PLUS trial is not publicly available since it contains information that could compromise the privacy of research participants. However, de-identified data could be shared upon request, subject to approval from the Soroka Medical Center Medical Ethics Board. A processed version of the data that includes participants' demographics, predicted and observed age and weight values for T0 and T18 is available as supplementary information.

The following previously published data sets were used
    1. Nooner
    2. KB
    3. Colcombe
    4. SJ
    5. Tobe
    6. RH
    7. Mennes
    8. M
    9. Benedict
    10. MM
    11. Moreno
    12. AL
    13. Panek
    14. LJ
    15. Brown
    16. S
    17. Zavitz
    18. ST
    19. Li
    20. Q and Sikka
    21. S
    (2012) The NKI-Rockland sample
    Wide array of physiological and psychological assessments, genetic information, and advanced neuroimaging.

Article and author information

Author details

  1. Gidon Levakov

    Department of Cognitive and Brain Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
    For correspondence
    gidonle@post.bgu.ac.il
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5520-3556
  2. Alon Kaplan

    Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
    Competing interests
    No competing interests declared.
  3. Anat Yaskolka Meir

    Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
    Competing interests
    No competing interests declared.
  4. Ehud Rinott

    Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
    Competing interests
    No competing interests declared.
  5. Gal Tsaban

    Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
    Competing interests
    No competing interests declared.
  6. Hila Zelicha

    Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
    Competing interests
    No competing interests declared.
  7. Matthias Blüher

    Department of Medicine, University of Leipzig, Leipzig, Germany
    Competing interests
    Matthias Blüher, has received consulting fees from Amgen, Astra Zeneca, Boehringer-Ingelheim, Bayer, Lilly, Novo Nordisk, Novartis, Sanofi and Pfizer; and fees for lectures/ presentations from Amgen, Astra Zeneca, Boehringer-Ingelheim, Bayer, Daiichi-Sankyo, Lilly, Novo Nordisk, Novartis, Sanofi and Pfizer. The author is also on the advisory board for Boehringer-Ingelheim. The author has no other competing interests to declare..
  8. Uta Ceglarek

    Department of Medicine, University of Leipzig, Leipzig, Germany
    Competing interests
    No competing interests declared.
  9. Michael Stumvoll

    Department of Medicine, University of Leipzig, Leipzig, Germany
    Competing interests
    No competing interests declared.
  10. Ilan Shelef

    Department of Diagnostic Imaging, Soroka Medical Center, Beer Sheva, Israel
    Competing interests
    No competing interests declared.
  11. Galia Avidan

    Department of Psychology, Ben-Gurion University of the Negev, Beer Sheva, Israel
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2293-3859
  12. Iris Shai

    Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
    Competing interests
    No competing interests declared.

Funding

The German Research Foundation (209933838 SFB 1052; B11)

  • Iris Shai

Israel Ministry of Health (grant 87472511)

  • Iris Shai

Israel Ministry of Science and Technology (3-13604)

  • Iris Shai

California Walnuts Commission

  • Iris Shai

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Muthuswamy Balasubramanyam, Madras Diabetes Research Foundation, India

Ethics

Human subjects: This work was based on a sub-study of the DIREC-PLUS trial (clinicaltrials.gov ID: NCT03020186). The Soroka Medical Center Medical Ethics Board and Institutional Review Board provided ethics approval. All participants provided written consent and received no financial compensation.

Version history

  1. Preprint posted: September 21, 2022 (view preprint)
  2. Received: September 21, 2022
  3. Accepted: March 31, 2023
  4. Accepted Manuscript published: April 6, 2023 (version 1)
  5. Version of Record published: May 11, 2023 (version 2)

Copyright

© 2023, Levakov et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,139
    views
  • 701
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gidon Levakov
  2. Alon Kaplan
  3. Anat Yaskolka Meir
  4. Ehud Rinott
  5. Gal Tsaban
  6. Hila Zelicha
  7. Matthias Blüher
  8. Uta Ceglarek
  9. Michael Stumvoll
  10. Ilan Shelef
  11. Galia Avidan
  12. Iris Shai
(2023)
The effect of weight loss following 18 months of lifestyle intervention on brain age assessed with resting-state functional connectivity
eLife 12:e83604.
https://doi.org/10.7554/eLife.83604

Share this article

https://doi.org/10.7554/eLife.83604

Further reading

    1. Epidemiology and Global Health
    2. Microbiology and Infectious Disease
    Patrick E Brown, Sze Hang Fu ... Ab-C Study Collaborators
    Research Article

    Background: Few national-level studies have evaluated the impact of 'hybrid' immunity (vaccination coupled with recovery from infection) from the Omicron variants of SARS-CoV-2.

    Methods: From May 2020 to December 2022, we conducted serial assessments (each of ~4000-9000 adults) examining SARS-CoV-2 antibodies within a mostly representative Canadian cohort drawn from a national online polling platform. Adults, most of whom were vaccinated, reported viral test-confirmed infections and mailed self-collected dried blood spots to a central lab. Samples underwent highly sensitive and specific antibody assays to spike and nucleocapsid protein antigens, the latter triggered only by infection. We estimated cumulative SARS-CoV-2 incidence prior to the Omicron period and during the BA.1/1.1 and BA.2/5 waves. We assessed changes in antibody levels and in age-specific active immunity levels.

    Results: Spike levels were higher in infected than in uninfected adults, regardless of vaccination doses. Among adults vaccinated at least thrice and infected more than six months earlier, spike levels fell notably and continuously for the nine months post-vaccination. By contrast, among adults infected within six months, spike levels declined gradually. Declines were similar by sex, age group, and ethnicity. Recent vaccination attenuated declines in spike levels from older infections. In a convenience sample, spike antibody and cellular responses were correlated. Near the end of 2022, about 35% of adults above age 60 had their last vaccine dose more than six months ago, and about 25% remained uninfected. The cumulative incidence of SARS-CoV-2 infection rose from 13% (95% CI 11-14%) before omicron to 78% (76-80%) by December 2022, equating to 25 million infected adults cumulatively. However, the COVID-19 weekly death rate during the BA.2/5 waves was less than half of that during the BA.1/1.1 wave, implying a protective role for hybrid immunity.

    Conclusions: Strategies to maintain population-level hybrid immunity require up-to-date vaccination coverage, including among those recovering from infection. Population-based, self-collected dried blood spots are a practicable biological surveillance platform.

    Funding: Funding was provided by the COVID-19 Immunity Task Force, Canadian Institutes of Health Research, Pfizer Global Medical Grants, and St. Michael's Hospital Foundation. PJ and ACG are funded by the Canada Research Chairs Program.

    1. Computational and Systems Biology
    2. Epidemiology and Global Health
    Javier I Ottaviani, Virag Sagi-Kiss ... Gunter GC Kuhnle
    Research Article

    The chemical composition of foods is complex, variable, and dependent on many factors. This has a major impact on nutrition research as it foundationally affects our ability to adequately assess the actual intake of nutrients and other compounds. In spite of this, accurate data on nutrient intake are key for investigating the associations and causal relationships between intake, health, and disease risk at the service of developing evidence-based dietary guidance that enables improvements in population health. Here, we exemplify the importance of this challenge by investigating the impact of food content variability on nutrition research using three bioactives as model: flavan-3-ols, (–)-epicatechin, and nitrate. Our results show that common approaches aimed at addressing the high compositional variability of even the same foods impede the accurate assessment of nutrient intake generally. This suggests that the results of many nutrition studies using food composition data are potentially unreliable and carry greater limitations than commonly appreciated, consequently resulting in dietary recommendations with significant limitations and unreliable impact on public health. Thus, current challenges related to nutrient intake assessments need to be addressed and mitigated by the development of improved dietary assessment methods involving the use of nutritional biomarkers.