Abstract

Serial focussed ion beam scanning electron microscopy (FIB/SEM) enables imaging and assessment of sub-cellular structures on the mesoscale (10 nm to 10 µm). When applied to vitrified samples, serial FIB/SEM is also a means to target specific structures in cells and tissues while maintaining constituents' hydration shells for in-situ structural biology downstream. However, the application of serial FIB/SEM imaging of non-stained cryogenic biological samples is limited due to low contrast, curtaining, and charging artefacts. We address these challenges using a cryogenic plasma FIB/SEM (cryo-pFIB/SEM). We evaluated the choice of plasma ion source and imaging regimes to produce high quality SEM images of a range of different biological samples. Using an automated workflow we produced three dimensional volumes of bacteria, human cells, and tissue, and calculated estimates for their resolution, typically achieving 20 to 50 nm. Additionally, a tag-free localisation tool for regions of interest is needed to drive the application of in-situ structural biology towards tissue. The combination of serial FIB/SEM with plasma-based ion sources promises a framework for targeting specific features in bulk-frozen samples (>100 µm) to produce lamellae for cryogenic electron tomography.

Data availability

Raw data, along with segmentation and associated TEM overviews (if relevant) are deposited on the EMPIAR data repository: EMPIAR-11414, EMPIAR-11415, EMPIAR-11416, EMPIAR-11417, EMPIAR-11418, EMPIAR-11419, EMPIAR-11420, EMPIAR-11421. Code can be found on the Rosalind Franklin Institute GitHub (https://github.com/rosalindfranklininstitute/) and the serialFIB GitHub (https://github.com/sklumpe/SerialFIB/).

The following data sets were generated

Article and author information

Author details

  1. Maud Dumoux

    Structural Biology, Rosalind Franklin Institute, Didcot, United Kingdom
    For correspondence
    maud.dumoux@rfi.ac.uk
    Competing interests
    No competing interests declared.
  2. Thomas Glen

    Structural Biology, Rosalind Franklin Institute, Didcot, United Kingdom
    Competing interests
    No competing interests declared.
  3. Jake LR Smith

    Structural Biology, Rosalind Franklin Institute, Didcot, United Kingdom
    Competing interests
    No competing interests declared.
  4. Elaine ML Ho

    Artificial Intelligence and Informatics, Rosalind Franklin Institute, Didcot, United Kingdom
    Competing interests
    No competing interests declared.
  5. Luis MA Perdigão

    Artificial Intelligence and Informatics, Rosalind Franklin Institute, Didcot, United Kingdom
    Competing interests
    No competing interests declared.
  6. Avery Pennington

    Diamond Light Source, Didcot, United Kingdom
    Competing interests
    No competing interests declared.
  7. Sven Klumpe

    Research Group Cryo-EM Technology, Max Planck Institute of Biochemistry, Martinsried, Germany
    Competing interests
    No competing interests declared.
  8. Neville BY Yee

    Artificial Intelligence and Informatics, Rosalind Franklin Institute, Didcot, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0349-3958
  9. David Andrew Farmer

    Diamond Light Source, Didcot, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5331-3551
  10. Pui YA Lai

    Diamond Light Source, Didcot, United Kingdom
    Competing interests
    No competing interests declared.
  11. William Bowles

    Structural Biology, Rosalind Franklin Institute, Didcot, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8115-4404
  12. Ron Kelley

    Materials and Structural Analysis Division, Thermo Fisher Scientific, Eindhoven, Netherlands
    Competing interests
    Ron Kelley, is an employee of ThermoFisher Scientific.
  13. Jürgen M Plitzko

    Research Group Cryo-EM Technology, Max Planck Institute of Biochemistry, Martinsried, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6402-8315
  14. Liang Wu

    Structural Biology, Rosalind Franklin Institute, Didcot, United Kingdom
    Competing interests
    No competing interests declared.
  15. Mark Basham

    Diamond Light Source, Didcot, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8438-1415
  16. Daniel K Clare

    Diamond Light Source, Didcot, United Kingdom
    Competing interests
    No competing interests declared.
  17. C Alistair Siebert

    eBIC, Diamond Light Source, Didcott, United Kingdom
    Competing interests
    No competing interests declared.
  18. Michele C Darrow

    Artificial Intelligence and Informatics, Rosalind Franklin Institute, Didcot, United Kingdom
    Competing interests
    Michele C Darrow, is an employee of SPT Labtech..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6259-1684
  19. James H Naismith

    Structural Biology, Rosalind Franklin Institute, Didcot, United Kingdom
    Competing interests
    No competing interests declared.
  20. Michael Grange

    Structural Biology, Rosalind Franklin Institute, Didcot, United Kingdom
    For correspondence
    michael.grange@rfi.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2580-2299

Funding

Wellcome Trust (220526/Z/20/Z)

  • James H Naismith

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All of the animals were handled according to approved, reviewed institutional animal care procedures. Mice were euthanised in a schedule 1 procedure via intraperitoneal injection of sodium pentobarbital followed by decapitation following licensed procedures approved by the Mary Lyon Centre and the Home Office UK. All operating procedures were designed to minimise any suffering for the animals involved in the study.

Copyright

© 2023, Dumoux et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,154
    views
  • 914
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Maud Dumoux
  2. Thomas Glen
  3. Jake LR Smith
  4. Elaine ML Ho
  5. Luis MA Perdigão
  6. Avery Pennington
  7. Sven Klumpe
  8. Neville BY Yee
  9. David Andrew Farmer
  10. Pui YA Lai
  11. William Bowles
  12. Ron Kelley
  13. Jürgen M Plitzko
  14. Liang Wu
  15. Mark Basham
  16. Daniel K Clare
  17. C Alistair Siebert
  18. Michele C Darrow
  19. James H Naismith
  20. Michael Grange
(2023)
Cryo-plasma FIB/SEM volume imaging of biological specimens
eLife 12:e83623.
https://doi.org/10.7554/eLife.83623

Share this article

https://doi.org/10.7554/eLife.83623

Further reading

    1. Cell Biology
    Mitsuhiro Abe, Masataka Yanagawa ... Yasushi Sako
    Research Article

    Anionic lipid molecules, including phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2), are implicated in the regulation of epidermal growth factor receptor (EGFR). However, the role of the spatiotemporal dynamics of PI(4,5)P2 in the regulation of EGFR activity in living cells is not fully understood, as it is difficult to visualize the local lipid domains around EGFR. Here, we visualized both EGFR and PI(4,5)P2 nanodomains in the plasma membrane of HeLa cells using super-resolution single-molecule microscopy. The EGFR and PI(4,5)P2 nanodomains aggregated before stimulation with epidermal growth factor (EGF) through transient visits of EGFR to the PI(4,5)P2 nanodomains. The degree of coaggregation decreased after EGF stimulation and depended on phospholipase Cγ, the EGFR effector hydrolyzing PI(4,5)P2. Artificial reduction in the PI(4,5)P2 content of the plasma membrane reduced both the dimerization and autophosphorylation of EGFR after stimulation with EGF. Inhibition of PI(4,5)P2 hydrolysis after EGF stimulation decreased phosphorylation of EGFR-Thr654. Thus, EGFR kinase activity and the density of PI(4,5)P2 around EGFR molecules were found to be mutually regulated.

    1. Cell Biology
    Jeongsik Kim, Dahyun Kim ... Dae-Sik Lim
    Research Article

    Cell survival in metazoans depends on cell attachment to the extracellular matrix (ECM) or to neighboring cells. Loss of such attachment triggers a type of programmed cell death known as anoikis, the acquisition of resistance to which is a key step in cancer development. The mechanisms underlying anoikis resistance remain unclear, however. The intracellular F-actin cytoskeleton plays a key role in sensing the loss of cell–ECM attachment, but how its disruption affects cell fate during such stress is not well understood. Here, we reveal a cell survival strategy characterized by the formation of a giant unilocular vacuole (GUVac) in the cytoplasm of the cells whose actin cytoskeleton is disrupted during loss of matrix attachment. Time-lapse imaging and electron microscopy showed that large vacuoles with a diameter of >500 nm accumulated early after inhibition of actin polymerization in cells in suspension culture, and that these vacuoles subsequently coalesced to form a GUVac. GUVac formation was found to result from a variation of a macropinocytosis-like process, characterized by the presence of inwardly curved membrane invaginations. This phenomenon relies on both F-actin depolymerization and the recruitment of septin proteins for micron-sized plasma membrane invagination. The vacuole fusion step during GUVac formation requires PI(3)P produced by VPS34 and PI3K-C2α on the surface of vacuoles. Furthermore, its induction after loss of matrix attachment conferred anoikis resistance. Our results thus show that the formation of a previously unrecognized organelle promotes cell survival in the face of altered actin and matrix environments.