Abstract

Serial focussed ion beam scanning electron microscopy (FIB/SEM) enables imaging and assessment of sub-cellular structures on the mesoscale (10 nm to 10 µm). When applied to vitrified samples, serial FIB/SEM is also a means to target specific structures in cells and tissues while maintaining constituents' hydration shells for in-situ structural biology downstream. However, the application of serial FIB/SEM imaging of non-stained cryogenic biological samples is limited due to low contrast, curtaining, and charging artefacts. We address these challenges using a cryogenic plasma FIB/SEM (cryo-pFIB/SEM). We evaluated the choice of plasma ion source and imaging regimes to produce high quality SEM images of a range of different biological samples. Using an automated workflow we produced three dimensional volumes of bacteria, human cells, and tissue, and calculated estimates for their resolution, typically achieving 20 to 50 nm. Additionally, a tag-free localisation tool for regions of interest is needed to drive the application of in-situ structural biology towards tissue. The combination of serial FIB/SEM with plasma-based ion sources promises a framework for targeting specific features in bulk-frozen samples (>100 µm) to produce lamellae for cryogenic electron tomography.

Data availability

Raw data, along with segmentation and associated TEM overviews (if relevant) are deposited on the EMPIAR data repository: EMPIAR-11414, EMPIAR-11415, EMPIAR-11416, EMPIAR-11417, EMPIAR-11418, EMPIAR-11419, EMPIAR-11420, EMPIAR-11421. Code can be found on the Rosalind Franklin Institute GitHub (https://github.com/rosalindfranklininstitute/) and the serialFIB GitHub (https://github.com/sklumpe/SerialFIB/).

The following data sets were generated

Article and author information

Author details

  1. Maud Dumoux

    Structural Biology, Rosalind Franklin Institute, Didcot, United Kingdom
    For correspondence
    maud.dumoux@rfi.ac.uk
    Competing interests
    No competing interests declared.
  2. Thomas Glen

    Structural Biology, Rosalind Franklin Institute, Didcot, United Kingdom
    Competing interests
    No competing interests declared.
  3. Jake LR Smith

    Structural Biology, Rosalind Franklin Institute, Didcot, United Kingdom
    Competing interests
    No competing interests declared.
  4. Elaine ML Ho

    Artificial Intelligence and Informatics, Rosalind Franklin Institute, Didcot, United Kingdom
    Competing interests
    No competing interests declared.
  5. Luis MA Perdigão

    Artificial Intelligence and Informatics, Rosalind Franklin Institute, Didcot, United Kingdom
    Competing interests
    No competing interests declared.
  6. Avery Pennington

    Diamond Light Source, Didcot, United Kingdom
    Competing interests
    No competing interests declared.
  7. Sven Klumpe

    Research Group Cryo-EM Technology, Max Planck Institute of Biochemistry, Martinsried, Germany
    Competing interests
    No competing interests declared.
  8. Neville BY Yee

    Artificial Intelligence and Informatics, Rosalind Franklin Institute, Didcot, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0349-3958
  9. David Andrew Farmer

    Diamond Light Source, Didcot, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5331-3551
  10. Pui YA Lai

    Diamond Light Source, Didcot, United Kingdom
    Competing interests
    No competing interests declared.
  11. William Bowles

    Structural Biology, Rosalind Franklin Institute, Didcot, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8115-4404
  12. Ron Kelley

    Materials and Structural Analysis Division, Thermo Fisher Scientific, Eindhoven, Netherlands
    Competing interests
    Ron Kelley, is an employee of ThermoFisher Scientific.
  13. Jürgen M Plitzko

    Research Group Cryo-EM Technology, Max Planck Institute of Biochemistry, Martinsried, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6402-8315
  14. Liang Wu

    Structural Biology, Rosalind Franklin Institute, Didcot, United Kingdom
    Competing interests
    No competing interests declared.
  15. Mark Basham

    Diamond Light Source, Didcot, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8438-1415
  16. Daniel K Clare

    Diamond Light Source, Didcot, United Kingdom
    Competing interests
    No competing interests declared.
  17. C Alistair Siebert

    eBIC, Diamond Light Source, Didcott, United Kingdom
    Competing interests
    No competing interests declared.
  18. Michele C Darrow

    Artificial Intelligence and Informatics, Rosalind Franklin Institute, Didcot, United Kingdom
    Competing interests
    Michele C Darrow, is an employee of SPT Labtech..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6259-1684
  19. James H Naismith

    Structural Biology, Rosalind Franklin Institute, Didcot, United Kingdom
    Competing interests
    No competing interests declared.
  20. Michael Grange

    Structural Biology, Rosalind Franklin Institute, Didcot, United Kingdom
    For correspondence
    michael.grange@rfi.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2580-2299

Funding

Wellcome Trust (220526/Z/20/Z)

  • James H Naismith

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Giulia Zanetti, Birkbeck, University of London, United Kingdom

Ethics

Animal experimentation: All of the animals were handled according to approved, reviewed institutional animal care procedures. Mice were euthanised in a schedule 1 procedure via intraperitoneal injection of sodium pentobarbital followed by decapitation following licensed procedures approved by the Mary Lyon Centre and the Home Office UK. All operating procedures were designed to minimise any suffering for the animals involved in the study.

Version history

  1. Preprint posted: September 21, 2022 (view preprint)
  2. Received: September 21, 2022
  3. Accepted: February 20, 2023
  4. Accepted Manuscript published: February 21, 2023 (version 1)
  5. Version of Record published: March 8, 2023 (version 2)

Copyright

© 2023, Dumoux et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,359
    views
  • 821
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Maud Dumoux
  2. Thomas Glen
  3. Jake LR Smith
  4. Elaine ML Ho
  5. Luis MA Perdigão
  6. Avery Pennington
  7. Sven Klumpe
  8. Neville BY Yee
  9. David Andrew Farmer
  10. Pui YA Lai
  11. William Bowles
  12. Ron Kelley
  13. Jürgen M Plitzko
  14. Liang Wu
  15. Mark Basham
  16. Daniel K Clare
  17. C Alistair Siebert
  18. Michele C Darrow
  19. James H Naismith
  20. Michael Grange
(2023)
Cryo-plasma FIB/SEM volume imaging of biological specimens
eLife 12:e83623.
https://doi.org/10.7554/eLife.83623

Share this article

https://doi.org/10.7554/eLife.83623

Further reading

    1. Cell Biology
    Makiko Kashio, Sandra Derouiche ... Makoto Tominaga
    Research Article

    Reports indicate that an interaction between TRPV4 and anoctamin 1 (ANO1) could be widely involved in water efflux of exocrine glands, suggesting that the interaction could play a role in perspiration. In secretory cells of sweat glands present in mouse foot pads, TRPV4 clearly colocalized with cytokeratin 8, ANO1, and aquaporin-5 (AQP5). Mouse sweat glands showed TRPV4-dependent cytosolic Ca2+ increases that were inhibited by menthol. Acetylcholine-stimulated sweating in foot pads was temperature-dependent in wild-type, but not in TRPV4-deficient mice and was inhibited by menthol both in wild-type and TRPM8KO mice. The basal sweating without acetylcholine stimulation was inhibited by an ANO1 inhibitor. Sweating could be important for maintaining friction forces in mouse foot pads, and this possibility is supported by the finding that wild-type mice climbed up a slippery slope more easily than TRPV4-deficient mice. Furthermore, TRPV4 expression was significantly higher in controls and normohidrotic skin from patients with acquired idiopathic generalized anhidrosis (AIGA) compared to anhidrotic skin from patients with AIGA. Collectively, TRPV4 is likely involved in temperature-dependent perspiration via interactions with ANO1, and TRPV4 itself or the TRPV4/ANO 1 complex would be targeted to develop agents that regulate perspiration.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Ya-Juan Wang, Xiao-Jing Di ... Ting-Wei Mu
    Research Article

    Protein homeostasis (proteostasis) deficiency is an important contributing factor to neurological and metabolic diseases. However, how the proteostasis network orchestrates the folding and assembly of multi-subunit membrane proteins is poorly understood. Previous proteomics studies identified Hsp47 (Gene: SERPINH1), a heat shock protein in the endoplasmic reticulum lumen, as the most enriched interacting chaperone for gamma-aminobutyric type A (GABAA) receptors. Here, we show that Hsp47 enhances the functional surface expression of GABAA receptors in rat neurons and human HEK293T cells. Furthermore, molecular mechanism study demonstrates that Hsp47 acts after BiP (Gene: HSPA5) and preferentially binds the folded conformation of GABAA receptors without inducing the unfolded protein response in HEK293T cells. Therefore, Hsp47 promotes the subunit-subunit interaction, the receptor assembly process, and the anterograde trafficking of GABAA receptors. Overexpressing Hsp47 is sufficient to correct the surface expression and function of epilepsy-associated GABAA receptor variants in HEK293T cells. Hsp47 also promotes the surface trafficking of other Cys-loop receptors, including nicotinic acetylcholine receptors and serotonin type 3 receptors in HEK293T cells. Therefore, in addition to its known function as a collagen chaperone, this work establishes that Hsp47 plays a critical and general role in the maturation of multi-subunit Cys-loop neuroreceptors.