The deep-rooted origin of disulfide-rich spider venom toxins
Abstract
Spider venoms are a complex concoction of enzymes, polyamines, inorganic salts and disulfide-rich peptides (DRPs). Although DRPs are widely distributed and abundant, their evolutionary origin has remained elusive. This knowledge gap stems from the extensive molecular divergence of DRPs and a lack of sequence and structural data from diverse lineages. By evaluating DRPs under a comprehensive phylogenetic, structural and evolutionary framework, we have not only identified 78 novel spider toxin superfamilies but also provided the first evidence for their common origin. We trace the origin of these toxin superfamilies to a primordial knot - which we name 'Adi Shakti', after the creator of the Universe according to Hindu mythology - 375 MYA in the common ancestor of Araneomorphae and Mygalomorphae. As the lineages under evaluation constitute nearly 60% of extant spiders, our findings provide fascinating insights into the early evolution and diversification of the spider venom arsenal. Reliance on a single molecular toxin scaffold by nearly all spiders is in complete contrast to most other venomous animals that have recruited into their venoms diverse toxins with independent origins. By comparatively evaluating the molecular evolutionary histories of araneomorph and mygalomorph spider venom toxins, we highlight their contrasting evolutionary diversification rates. Our results also suggest that venom deployment (e.g., prey capture or self-defense) influences evolutionary diversification of DRP toxin superfamilies.
Data availability
All data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been provided for Figures 2, 3, 4 and 5.
Article and author information
Author details
Funding
The Wellcome Trust DBT India Alliance (IA/I/19/2/504647)
- Kartik Sunagar
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2023, Shaikh & Sunagar
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,802
- views
-
- 458
- downloads
-
- 13
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Ecology
Behavioral strategies for foraging and reproduction in the oriental fruit fly (Bactrocera dorsalis) are alternative options for resource allocation and are controlled by neuropeptides. Here, we show that the behavioral switch between foraging and reproduction is associated with changes in antennal sensitivity. Starved flies became more sensitive to food odors while suppressing their response to opposite-sex pheromones. The gene encoding sulfakinin receptor 1 (SkR1) was significantly upregulated in the antennae of starved flies, so we tested the behavioral phenotypes of null mutants for the genes encoding the receptor (skr1–/–) and its ligand sulfakinin (sk–/–). In both knockout lines, the antennal responses shifted to mating mode even when flies were starved. This suggests that sulfakinin signaling via SkR1 promotes foraging while suppressing mating. Further analysis of the mutant flies revealed that sets of odorant receptor (OR) genes were differentially expressed. Functional characterization of the differentially expressed ORs suggested that sulfakinin directly suppresses the expression of ORs that respond to opposite-sex hormones while enhancing the expression of ORs that detect food volatiles. We conclude that sulfakinin signaling via SkR1, modulating OR expressions and leading to altered antenna sensitivities, is an important component in starvation-dependent behavioral change.
-
- Ecology
Antarctic krill is a species with fundamental importance for the Southern Ocean ecosystem. Their large biomass and synchronized movements, like diel vertical migration (DVM), significantly impact ecosystem structure and the biological carbon pump. Despite decades of research, the mechanistic basis of DVM remains unclear. Circadian clocks help organisms anticipate daily environmental changes, optimizing adaptation. In this study, we used a recently developed activity monitor to record swimming activity of individual, wild-caught krill under various light conditions and across different seasons. Our data demonstrate how the krill circadian clock, in combination with light, drives a distinct bimodal pattern of swimming activity, which could facilitate ecologically important behavioral patterns, such as DVM. Rapid damping and flexible synchronization of krill activity indicate that the krill clock is adapted to a life at high latitudes and seasonal activity recordings suggest a clock-based mechanism for the timing of seasonal processes. Our findings advance our understanding of biological timing and high-latitude adaptation in this key species.