Cerebral chemoarchitecture shares organizational traits with brain structure and function

  1. Benjamin Hänisch
  2. Justine Y Hansen
  3. Boris C Bernhardt
  4. Simon B Eickhoff
  5. Juergen Dukart
  6. Bratislav Misic
  7. Sofie Louise Valk  Is a corresponding author
  1. Forschungszentrum Jülich, Germany
  2. McGill University, Canada
  3. Max Planck Institute for Human Cognitive and Brain Sciences, Germany

Abstract

Chemoarchitecture, the heterogeneous distribution of neurotransmitter transporter and receptor molecules, is a relevant component of structure-function relationships in the human brain. Here, we studied the organization of the receptome, a measure of interareal chemoarchitectural similarity, derived from Positron-Emission Tomography imaging studies of 19 different neurotransmitter transporters and receptors. Nonlinear dimensionality reduction revealed three main spatial gradients of cortical chemoarchitectural similarity - a centro-temporal gradient, an occipito-frontal gradient, and a temporo-occipital gradient. In subcortical nuclei, chemoarchitectural similarity distinguished functional communities and delineated a striato-thalamic axis. Overall, the cortical receptome shared key organizational traits with functional and structural brain anatomy, with node-level correspondence to functional, microstructural, and diffusion MRI-based measures decreasing along a primary-to-transmodal axis. Relative to primary and paralimbic regions, unimodal and heteromodal regions showed higher receptomic diversification, possibly supporting functional flexibility.

Data availability

All data and software used in this study is openly accessible. PET data is available at https://github.com/netneurolab/hansen_receptors. FC, SC and MPC data is available at https://portal.conp.ca/dataset?id=projects/mica-mics. ENIGMA data is available through enigmatoolbox (https://github.com/MICA-MNI/ENIGMA). Meta-analytical functional activation data is available through Neurosynth (https://neurosynth.org/analyses/topics/v5-topics-50). The code used to perform the analyses can be found at https://github.com/CNG-LAB/cngopen/receptor_similarity.

The following previously published data sets were used

Article and author information

Author details

  1. Benjamin Hänisch

    Institute of Neuroscience and Medicine, Brain and Behaviour, Forschungszentrum Jülich, Jülich, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5463-4218
  2. Justine Y Hansen

    Montréal Neurological Institute, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3142-7480
  3. Boris C Bernhardt

    Montreal Neurological Institute, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9256-6041
  4. Simon B Eickhoff

    Institute of Neuroscience and Medicine, Brain and Behaviour, Forschungszentrum Jülich, Jülich, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6363-2759
  5. Juergen Dukart

    Institute of Neuroscience and Medicine, Brain and Behaviour, Forschungszentrum Jülich, Jülich, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0492-5644
  6. Bratislav Misic

    Montréal Neurological Institute, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0307-2862
  7. Sofie Louise Valk

    Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
    For correspondence
    s.valk@fz-juelich.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2998-6849

Funding

Max-Planck-Institut für Kognitions- und Neurowissenschaften (Open Access funding)

  • Sofie Louise Valk

FRQ-S

  • Boris C Bernhardt

Tier-2 Canada Research Chairs program

  • Boris C Bernhardt

Human Brain Project

  • Simon B Eickhoff

Max Planck Gesellschaft (Otto Hahn award)

  • Sofie Louise Valk

Helmholtz International Lab grant agreement (InterLabs-0015)

  • Boris C Bernhardt
  • Simon B Eickhoff
  • Sofie Louise Valk

Canada First Research Excellence Fund (CFREF Competition 2,2015-2016)

  • Boris C Bernhardt
  • Simon B Eickhoff
  • Sofie Louise Valk

European Union's Horizon 2020 (No. 826421 TheVirtualBrain-Cloud"")

  • Juergen Dukart

Helmholtz International BigBrain Analytics & Laboratory

  • Justine Y Hansen
  • Boris C Bernhardt
  • Simon B Eickhoff
  • Sofie Louise Valk

Natural Sciences and Engineering Research Council of Canada

  • Justine Y Hansen
  • Boris C Bernhardt
  • Bratislav Misic

Canadian Institutes of Health Research

  • Boris C Bernhardt
  • Bratislav Misic

Brain Canada Foundation Future Leaders Fund

  • Boris C Bernhardt
  • Bratislav Misic

Canada Research Chairs

  • Bratislav Misic

Michael J. Fox Foundation for Parkinson's Research

  • Bratislav Misic

SickKids Foundation (NI17-039)

  • Boris C Bernhardt

Azrieli Center for Autism Research (ACAR-TACC)

  • Boris C Bernhardt

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The current research complies with all relevant ethical regulations as set by The Independent Research Ethics Committee at the Medical Faculty of the Heinrich-Heine-University of Duesseldorf (study number 2018-317). The current data was based on open access resources, and ethic approvals of the individual datasets are available in the original publications of each data source.

Copyright

© 2023, Hänisch et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,517
    views
  • 278
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Benjamin Hänisch
  2. Justine Y Hansen
  3. Boris C Bernhardt
  4. Simon B Eickhoff
  5. Juergen Dukart
  6. Bratislav Misic
  7. Sofie Louise Valk
(2023)
Cerebral chemoarchitecture shares organizational traits with brain structure and function
eLife 12:e83843.
https://doi.org/10.7554/eLife.83843

Share this article

https://doi.org/10.7554/eLife.83843

Further reading

    1. Neuroscience
    Franziska Auer, Katherine Nardone ... David Schoppik
    Research Article

    Cerebellar dysfunction leads to postural instability. Recent work in freely moving rodents has transformed investigations of cerebellar contributions to posture. However, the combined complexity of terrestrial locomotion and the rodent cerebellum motivate new approaches to perturb cerebellar function in simpler vertebrates. Here, we adapted a validated chemogenetic tool (TRPV1/capsaicin) to describe the role of Purkinje cells — the output neurons of the cerebellar cortex — as larval zebrafish swam freely in depth. We achieved both bidirectional control (activation and ablation) of Purkinje cells while performing quantitative high-throughput assessment of posture and locomotion. Activation modified postural control in the pitch (nose-up/nose-down) axis. Similarly, ablations disrupted pitch-axis posture and fin-body coordination responsible for climbs. Postural disruption was more widespread in older larvae, offering a window into emergent roles for the developing cerebellum in the control of posture. Finally, we found that activity in Purkinje cells could individually and collectively encode tilt direction, a key feature of postural control neurons. Our findings delineate an expected role for the cerebellum in postural control and vestibular sensation in larval zebrafish, establishing the validity of TRPV1/capsaicin-mediated perturbations in a simple, genetically tractable vertebrate. Moreover, by comparing the contributions of Purkinje cell ablations to posture in time, we uncover signatures of emerging cerebellar control of posture across early development. This work takes a major step towards understanding an ancestral role of the cerebellum in regulating postural maturation.

    1. Neuroscience
    Gáspár Oláh, Rajmund Lákovics ... Gábor Tamás
    Research Article

    Human-specific cognitive abilities depend on information processing in the cerebral cortex, where the neurons are significantly larger and their processes longer and sparser compared to rodents. We found that, in synaptically connected layer 2/3 pyramidal cells (L2/3 PCs), the delay in signal propagation from soma to soma is similar in humans and rodents. To compensate for the longer processes of neurons, membrane potential changes in human axons and/or dendrites must propagate faster. Axonal and dendritic recordings show that the propagation speed of action potentials (APs) is similar in human and rat axons, but the forward propagation of excitatory postsynaptic potentials (EPSPs) and the backward propagation of APs are 26 and 47% faster in human dendrites, respectively. Experimentally-based detailed biophysical models have shown that the key factor responsible for the accelerated EPSP propagation in human cortical dendrites is the large conductance load imposed at the soma by the large basal dendritic tree. Additionally, larger dendritic diameters and differences in cable and ion channel properties in humans contribute to enhanced signal propagation. Our integrative experimental and modeling study provides new insights into the scaling rules that help maintain information processing speed albeit the large and sparse neurons in the human cortex.