Experience-dependent flexibility in a molecularly diverse central-to-peripheral auditory feedback system

  1. Michelle M Frank
  2. Austen A Sitko
  3. Kirupa Suthakar
  4. Lester Torres Cadenas
  5. Mackenzie Hunt
  6. Mary Caroline Yuk
  7. Catherine Weisz
  8. Lisa V Goodrich  Is a corresponding author
  1. Harvard Medical School, United States
  2. National Institute on Deafness and Other Communication Disorders, United States

Abstract

Brainstem olivocochlear neurons (OCNs) modulate the earliest stages of auditory processing through feedback projections to the cochlea and have been shown to influence hearing and protect the ear from sound-induced damage. Here, we used single-nucleus sequencing, anatomical reconstructions, and electrophysiology to characterize murine OCNs during postnatal development, in mature animals, and after sound exposure. We identified markers for known medial (MOC) and lateral (LOC) OCN subtypes, and show that they express distinct cohorts of physiologically relevant genes that change over development. In addition, we discovered a neuropeptide-enriched LOC subtype that produces Neuropeptide Y along with other neurotransmitters. Throughout the cochlea, both LOC subtypes extend arborizations over wide frequency domains. Moreover, LOC neuropeptide expression is strongly upregulated days after acoustic trauma, potentially providing a sustained protective signal to the cochlea. OCNs are therefore poised to have diffuse, dynamic effects on early auditory processing over timescales ranging from milliseconds to days.

Data availability

Single-cell data collected in this study is available on GEO, accession number GSE214027.

The following data sets were generated

Article and author information

Author details

  1. Michelle M Frank

    Department of Neurobiology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6613-8251
  2. Austen A Sitko

    Department of Neurobiology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7601-6143
  3. Kirupa Suthakar

    Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Lester Torres Cadenas

    Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Mackenzie Hunt

    Department of Neurobiology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Mary Caroline Yuk

    Department of Neurobiology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Catherine Weisz

    Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2595-835X
  8. Lisa V Goodrich

    Department of Neurobiology, Harvard Medical School, Boston, United States
    For correspondence
    Lisa_Goodrich@hms.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3331-8600

Funding

National Institute on Deafness and Other Communication Disorders (R01-DC015974)

  • Lisa V Goodrich

National Institute on Deafness and Other Communication Disorders (R01-DC009223)

  • Lisa V Goodrich

NIH Office of the Director (Z01-DC000091)

  • Catherine Weisz

Blavatnik Family Foundation (Blavatnik Sensory Disorders Research Grant)

  • Lisa V Goodrich

National Institute on Deafness and Other Communication Disorders (F32-DC019009)

  • Austen A Sitko

Harvard Mahoney Neuroscience Institute Fund (Postdoctoral Fellowship)

  • Austen A Sitko

Amgen Foundation (Summer Fellowship)

  • Mary Caroline Yuk

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in accordance with recommendations from the Guide for the Care and Use of Laboratory Animals. All experiments and procedures were approved by the Institutional Care and Use Committee of Harvard Medical School (protocol #IS00000067) or the National Institute on Deafness and Other Communication Disorders Animal Care and Use Committee. Every effort was made to minimize suffering throughout this work.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,364
    views
  • 242
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michelle M Frank
  2. Austen A Sitko
  3. Kirupa Suthakar
  4. Lester Torres Cadenas
  5. Mackenzie Hunt
  6. Mary Caroline Yuk
  7. Catherine Weisz
  8. Lisa V Goodrich
(2023)
Experience-dependent flexibility in a molecularly diverse central-to-peripheral auditory feedback system
eLife 12:e83855.
https://doi.org/10.7554/eLife.83855

Share this article

https://doi.org/10.7554/eLife.83855

Further reading

    1. Neuroscience
    Yiting Li, Wenqu Yin ... Baoming Li
    Research Article

    Time estimation is an essential prerequisite underlying various cognitive functions. Previous studies identified ‘sequential firing’ and ‘activity ramps’ as the primary neuron activity patterns in the medial frontal cortex (mPFC) that could convey information regarding time. However, the relationship between these patterns and the timing behavior has not been fully understood. In this study, we utilized in vivo calcium imaging of mPFC in rats performing a timing task. We observed cells that showed selective activation at trial start, end, or during the timing interval. By aligning long-term time-lapse datasets, we discovered that sequential patterns of time coding were stable over weeks, while cells coding for trial start or end showed constant dynamism. Furthermore, with a novel behavior design that allowed the animal to determine individual trial interval, we were able to demonstrate that real-time adjustment in the sequence procession speed closely tracked the trial-to-trial interval variations. And errors in the rats’ timing behavior can be primarily attributed to the premature ending of the time sequence. Together, our data suggest that sequential activity maybe a stable neural substrate that represents time under physiological conditions. Furthermore, our results imply the existence of a unique cell type in the mPFC that participates in the time-related sequences. Future characterization of this cell type could provide important insights in the neural mechanism of timing and related cognitive functions.

    1. Neuroscience
    Bhanu Shrestha, Jiun Sang ... Youngseok Lee
    Research Article

    Sour taste, which is elicited by low pH, may serve to help animals distinguish appetitive from potentially harmful food sources. In all species studied to date, the attractiveness of oral acids is contingent on concentration. Many carboxylic acids are attractive at ecologically relevant concentrations but become aversive beyond some maximal concentration. Recent work found that Drosophila ionotropic receptors IR25a and IR76b expressed by sweet-responsive gustatory receptor neurons (GRNs) in the labellum, a peripheral gustatory organ, mediate appetitive feeding behaviors toward dilute carboxylic acids. Here, we disclose the existence of pharyngeal sensors in Drosophila melanogaster that detect ingested carboxylic acids and are also involved in the appetitive responses to carboxylic acids. These pharyngeal sensors rely on IR51b, IR94a, and IR94h, together with IR25a and IR76b, to drive responses to carboxylic acids. We then demonstrate that optogenetic activation of either Ir94a+ or Ir94h+ GRNs promotes an appetitive feeding response, confirming their contributions to appetitive feeding behavior. Our discovery of internal pharyngeal sour taste receptors opens up new avenues for investigating the internal sensation of tastants in insects.