Experience-dependent flexibility in a molecularly diverse central-to-peripheral auditory feedback system

  1. Michelle M Frank
  2. Austen A Sitko
  3. Kirupa Suthakar
  4. Lester Torres Cadenas
  5. Mackenzie Hunt
  6. Mary Caroline Yuk
  7. Catherine Weisz
  8. Lisa V Goodrich  Is a corresponding author
  1. Harvard Medical School, United States
  2. National Institute on Deafness and Other Communication Disorders, United States

Abstract

Brainstem olivocochlear neurons (OCNs) modulate the earliest stages of auditory processing through feedback projections to the cochlea and have been shown to influence hearing and protect the ear from sound-induced damage. Here, we used single-nucleus sequencing, anatomical reconstructions, and electrophysiology to characterize murine OCNs during postnatal development, in mature animals, and after sound exposure. We identified markers for known medial (MOC) and lateral (LOC) OCN subtypes, and show that they express distinct cohorts of physiologically relevant genes that change over development. In addition, we discovered a neuropeptide-enriched LOC subtype that produces Neuropeptide Y along with other neurotransmitters. Throughout the cochlea, both LOC subtypes extend arborizations over wide frequency domains. Moreover, LOC neuropeptide expression is strongly upregulated days after acoustic trauma, potentially providing a sustained protective signal to the cochlea. OCNs are therefore poised to have diffuse, dynamic effects on early auditory processing over timescales ranging from milliseconds to days.

Data availability

Single-cell data collected in this study is available on GEO, accession number GSE214027.

The following data sets were generated

Article and author information

Author details

  1. Michelle M Frank

    Department of Neurobiology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6613-8251
  2. Austen A Sitko

    Department of Neurobiology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7601-6143
  3. Kirupa Suthakar

    Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Lester Torres Cadenas

    Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Mackenzie Hunt

    Department of Neurobiology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Mary Caroline Yuk

    Department of Neurobiology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Catherine Weisz

    Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2595-835X
  8. Lisa V Goodrich

    Department of Neurobiology, Harvard Medical School, Boston, United States
    For correspondence
    Lisa_Goodrich@hms.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3331-8600

Funding

National Institute on Deafness and Other Communication Disorders (R01-DC015974)

  • Lisa V Goodrich

National Institute on Deafness and Other Communication Disorders (R01-DC009223)

  • Lisa V Goodrich

NIH Office of the Director (Z01-DC000091)

  • Catherine Weisz

Blavatnik Family Foundation (Blavatnik Sensory Disorders Research Grant)

  • Lisa V Goodrich

National Institute on Deafness and Other Communication Disorders (F32-DC019009)

  • Austen A Sitko

Harvard Mahoney Neuroscience Institute Fund (Postdoctoral Fellowship)

  • Austen A Sitko

Amgen Foundation (Summer Fellowship)

  • Mary Caroline Yuk

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in accordance with recommendations from the Guide for the Care and Use of Laboratory Animals. All experiments and procedures were approved by the Institutional Care and Use Committee of Harvard Medical School (protocol #IS00000067) or the National Institute on Deafness and Other Communication Disorders Animal Care and Use Committee. Every effort was made to minimize suffering throughout this work.

Reviewing Editor

  1. Catherine Emily Carr, University of Maryland, United States

Publication history

  1. Received: September 30, 2022
  2. Accepted: March 3, 2023
  3. Accepted Manuscript published: March 6, 2023 (version 1)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 159
    Page views
  • 60
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michelle M Frank
  2. Austen A Sitko
  3. Kirupa Suthakar
  4. Lester Torres Cadenas
  5. Mackenzie Hunt
  6. Mary Caroline Yuk
  7. Catherine Weisz
  8. Lisa V Goodrich
(2023)
Experience-dependent flexibility in a molecularly diverse central-to-peripheral auditory feedback system
eLife 12:e83855.
https://doi.org/10.7554/eLife.83855

Further reading

    1. Neuroscience
    Yonatan Sanz Perl, Sol Fittipaldi ... Enzo Tagliazucchi
    Research Article

    The treatment of neurodegenerative diseases is hindered by lack of interventions capable of steering multimodal whole-brain dynamics towards patterns indicative of preserved brain health. To address this problem, we combined deep learning with a model capable of reproducing whole-brain functional connectivity in patients diagnosed with Alzheimer’s disease (AD) and behavioral variant frontotemporal dementia (bvFTD). These models included disease-specific atrophy maps as priors to modulate local parameters, revealing increased stability of hippocampal and insular dynamics as signatures of brain atrophy in AD and bvFTD, respectively. Using variational autoencoders, we visualized different pathologies and their severity as the evolution of trajectories in a low-dimensional latent space. Finally, we perturbed the model to reveal key AD- and bvFTD-specific regions to induce transitions from pathological to healthy brain states. Overall, we obtained novel insights on disease progression and control by means of external stimulation, while identifying dynamical mechanisms that underlie functional alterations in neurodegeneration.

    1. Neuroscience
    Andrea Alamia, Lucie Terral ... Rufin VanRullen
    Research Article Updated

    Previous research has associated alpha-band [8–12 Hz] oscillations with inhibitory functions: for instance, several studies showed that visual attention increases alpha-band power in the hemisphere ipsilateral to the attended location. However, other studies demonstrated that alpha oscillations positively correlate with visual perception, hinting at different processes underlying their dynamics. Here, using an approach based on traveling waves, we demonstrate that there are two functionally distinct alpha-band oscillations propagating in different directions. We analyzed EEG recordings from three datasets of human participants performing a covert visual attention task (one new dataset with N = 16, two previously published datasets with N = 16 and N = 31). Participants were instructed to detect a brief target by covertly attending to the screen’s left or right side. Our analysis reveals two distinct processes: allocating attention to one hemifield increases top-down alpha-band waves propagating from frontal to occipital regions ipsilateral to the attended location, both with and without visual stimulation. These top-down oscillatory waves correlate positively with alpha-band power in frontal and occipital regions. Yet, different alpha-band waves propagate from occipital to frontal regions and contralateral to the attended location. Crucially, these forward waves were present only during visual stimulation, suggesting a separate mechanism related to visual processing. Together, these results reveal two distinct processes reflected by different propagation directions, demonstrating the importance of considering oscillations as traveling waves when characterizing their functional role.